
"AD-A258 997 0
AFIT/GE/ENG/92D 3.3

DTIC
ELECTE
JAN! 11993D

Automated Face Recognition System

THESIS

Kenneth R. Runyon

Captain, USAF

AFIT/GE/ENG/92D .3

93-00081

Approved for public release; distribution unlimited

i8 ' 1 4 051)



AFIT/GEIENG/92D -33

Automated Face Recognition System

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

DTIC QUAi'• j i ,IF.,

Kenneth R. Runyon, B.S.S.E.

Captain, USAF

Alo.4slaum Jot
N TI- at"II• •

December, 1992 
1b

JUL t I f leat Iam

By,
D ist ri bmt i on/

Approved for public release; distribution unlimited Av•illability Codes
iAvai1 and/or

Dist Special



Acknowledgments

I would like to thank my thesis advisor, Dr. Steve Rogers, and the rest of my thesis committee, Dr.

Dennis Ruck, Dr. Matthew Kabrisky, and Dr. Mark Oxley. Their help made this thesis the educational

experience I had hoped for.

I would like to thank the Face Guys, Capt Kevin Gay and Capt Dennis Krepp. This assignment

might have been tough without them. As it was, I think I actually enjoyed myself. I also wish to thank

Dan Zambon and Dave Doak for their tireless efforts in administering the computer network.

Finally, I want to thank my family; my girls, Anna and Sarah, who have made significant

sacrifices in their short lives, and most especially, my lovely wife Lisa. If I have ever succeeded, it is

because of her.

Kenneth R. Runyon

ii



Table of Contents

Page

Acknowledgments ............ .................................... ii

Table of Contents ........... ..................................... iii

List of Figures ............ ...................................... viii

Abstract . ..................................................... ix

Problem Description ......... ................................ 1-1

1.1 Introduction ......... .............................. 1-1

1.2 Background ......... .............................. 1-2

1.2.1 Russell ......... ........................... 1-3

1.2.2 Smith ......... ............................ 1-3

1.2.3 Lambert ......... .......................... 1-3

1.2.4 Sander ......... ........................... 1-3

1.2.5 Robb ......... ............................ 1-3

1.2.6 Current AFRM Research ........................ 1-4

1.3 Problem Statement ......... .......................... 1-4

1.4 Research Objectives ........ .......................... 1-5

1.5 Assumptions ......... ............................. 1-5

1.6 Scope and Limitations ........ ......................... 1-6

1.7 Standards .......... ............................... 1-6

1.8 Approach and Methodology .............................. 1-6

1.9 Thesis Overview ......... ........................... 1-7

1.10 Summary .......... ............................... 1-7

iii



Page

II. Literature Review .......... ................................. 2-1

2.1 Introduction ......... .............................. 2-1

2.2 WISARD ......... ............................... 2-2

2.3 Los Alamos National Laboratory ....... ................... 2-4

2.4 Massachusetts Institute of Technology ....................... 2-6

2.5 University of California San Diego ....... .................. 2-8

2.6 Air Force Institute of Technology ....... ................... 2-10

2.6.1 Karhunen Lo6ve Transform ...... ................. 2-11

2.6.2 Discrete Cosine Transform ........................ 2-13

2.7 Summary ......... ............................... 2-14

III. Methodology .......... ................................... 3-1

3.1 General .......... ................................ 3-1

3.2 Common Front End Processing.. ........................... 3-2

3.2.1 Image Collection and Segmentation .................. 3-2

3.2.2 Preprocessing ........ ........................ 3-3

3.3 Feature Extraction ......... ........................... 3-3

3.3.1 Karhunen Lodve Transform ...... ................. 3-3

3.3.2 Discrete Cosine Transform ......................... 3-4

3.4 Classifiers ........ ............................... 3-4

3.4.1 Backpropagation Neural Network ...... .............. 3-5

3.4.2 K-nearest neighbor ............................. 3-6

3.5 Training Software ......... ........................... 3-6

3.5.1 KLT KNN System ........ ...................... 3-7

3.5.2 DCT KNN System .............................. 3-7

3.5.3 KLT BPNN System ....... ..................... 3-8

3.6 Recognition Software ........ ......................... 3-10

3.6.1 KLT KNN System ............................. 3-10

iv



Page

3.6.2 DCT KNN System ............................. 3-10

3.6.3 KLT BPNN System ....... ..................... 3-10

3.7 Test Descriptions ........ ........................... 3-11

3.7.1 23 Subject - Two Day Test ....... .................. 3-13

3.7.2 30 Subject Manually Segmented - Two Day Test ........... 3-13

3.7.3 Four Subject - Seven Day Test ...................... 3-14

3.7.4 Long Term Recognition Test ...................... 3-14

3.8 Summary ........................................ 3-14

IV. Results ............ ...................................... 4-1

4.1 Introduction ......... .............................. 4-1

4.2 23 User - Two Day Test ........ ........................ 4-2

4.2.1 Same Day Test ........ ........................ 4-3

4.2.2 Different Day Test ........ ...................... 4-4

4.2.3 Multiple Day Training ....... .................... 4-4

4.3 Effect of Segmentation ........ ........................ 4-5

4.4 Four Subject - Seven Day Test ............................ 4-6

4.4.1 K-nearest neighbor ............................. 4-7

4.4.2 Back Propagation Neural Network .................... 4-8

4.5 Accuracy versus K for the K-nearest neighbor .................. 4-10

4.6 Long Term Recognition Test ............................. 4-12

4.7 Single Person Verification ....... ....................... 4-13

V. Conclusions ........... .................................... 5-1

5.1 Introduction ......... .............................. 5-1

5.2 23 Subject - Two Day Test .............................. 5-1

5.3 30 Subject Manually Segmented - Two Day Test ................. 5-2

5.4 Four Subject - Seven Day Test ............................ 5-2

v



Page

5.5 Accuracy Versus K for the K-nearest neighbor ..... ............. 5-3

5.6 Single Person Verification ....... ....................... 5-4

5.7 Long Term Recognition Accuarcy .......................... 5-5

5.8 Comparison to Other Systems ....... ..................... 5-5

VI. Software Documentation ......... ............................. 6-1

6.1 Makefile .......... ............................... 6-1

6.2 train.c ........... ................................ 6-3

6.3 train-net.c ........... .............................. 6-6

6.4 train-dct.c ........... .............................. 6-10

6.5 train.c ......... ................................ 6-12

6.6 retrain.c ........... ............................... 6-15

6.7 add-usr.c ......... ............................... 6-16

6.8 verify.c ......... ................................ 6-19

6.9 verify-net.c ......... .............................. 6-21

6.10 verify-dct.c .......... .............................. 6-23

6.11 klt.c .......... .................................. 6-24

6.12 seg-grab.c ......... .............................. 6-28

6.13 center.c .......... ................................ 6-29

6.14 coefficients.c ......... ............................. 6-34

6.15 netcoefficients.c ........ ........................... 6-36

6.16 display.c ........... ............................... 6-38

6.17 globals.h .......... ............................... 6-39

6.18 gwind.c ......... ................................ 6-39

6.19 mdct.c ........... ................................ 6-41

6.20 rescale.c ........... ............................... 6-43

6.21 grab.c ......... ................................. 6-44

6.22 k-nearest.c ......... .............................. 6-45

vi



Page

Bibliography .......... ....................................... BIB-I

Vita ............ ........................................... VITA-I

vii



List of Figures

Figure Page

2.1. WISARD Hardware Implementation ........ ....................... 2-3

2.2. WISARD Neural Network ......... ............................ 2-4

2.3. MIT Face Recognition System ......... .......................... 2-6

2.4. Identity Net Holons ......... ................................ 2-9

2.5. UCSD Recognition System ........ ............................ 2-10

2.6. KLT Feature Extraction Process ........ .......................... 2-12

2.7. DCT Feature Extraction Process ........ ......................... 2-13

3.1. Three Versions of the Face Recognition System ....... .................. 3-1

3.2. Front End System ........... ................................ 3-2

3.3. KLT Feature Extraction ......... .............................. 3-4

3.4. DCT Feature Extraction ......... ............................. 3-5

3.5. Back Propagation Neural Net Recognition Process ....... ................ 3-5

3.6. K-nearest neighbor Recognition Process ....... ..................... 3-7

3.7. KLT and DCT /KNN Training Process ........ ...................... 3-8

3.8. KLT/BPNN Training Process ......... ........................... 3-9

3.9. KLT and DCT/KNN Recognition Process ....... ..................... 3-11

3.10. KLTIBPNN Recognition Process ................................ 3-12

4.1. Four Class K-Nearest Neighbor Classifier Result ...... ................. 4-7

4.2. Four Class Backpropagation Classifier Result ....... ................... 4-9

4.3. Accuracy vs. K for 23 Subject Test ........ ........................ 4-11

4.4. Accuracy vs. K for 4 Subject Test ........ ......................... 4-12

viii



AFIT/GE/ENG/92D

Abstract

In this thesis three variations of an end-to-end face recognition prototype system are developed,

implemented and tested. Each version includes real-time image collection, automated segmentation,

preprocessing, feature extraction, and classification. The first version uses a Karhunen Loeve Transform

(KLT) feature extractor and a K-nearest neighbor classifier. Version two uses the same feature set but

utilizes a multilayer perceptron neural network with a back propagation learning rule. Finally the third

version uses a Discrete Cosine Transform as the feature extractor and the K-nearest neighbor as the

classifier. Only the KLT versions of the system were tested.

The tests were based on three image sets, each collected over multiple days to analyze the effect

on recognition accuracy of variations in both the image collection environment and the subjects over

time. The first set consisted of 23 Subjects and was taken over a two day period. The second set

consisted of four users and was taken over a seven day period. Finally, the third set consisted of 100

images of a single subject collected over several weeks.

The K-nearest neighbor achieved the following scores:

* 67% for a 23 Subject - 2 Day Test

* 90% for a 4 Subject - 7 Day Test

* 69% for a single subject - Long Term Test

ix



The Multilayer Perceptron had the following recognition accuracies:

* 74% for a 23 Subject - 2 Day Test

* 100% for a 4 Subject - 7 Day Test

* 100% for a single subject - Long Term Test

x



Automated Face Recognition System

I. Problem Description

1.1 Introduction

This thesis discusses the design, implementation, and testing of an end-to-end, automated, face

recognition system. This prototype is being developed in response to a DoD requirement for such

a system to provide controlled access to computer accounts. While pieces of the technology exist

in a mature enough form to be immediately implemented, other algorithms must be developed and

integrated to fully establish the system.

An automated face recognition system is a computer application which identifies individuals by

analyzing a video input of the person's face. The basic components which typically make up such a

system are a visual sensing system to collect the image, a segmentation algorithm to discount variations

of the background, the feature extraction algorithm to pull out the unique characteristics of the image

that distinguish an individual from anyone else, and a classifier to decide which individual the image

represents.

Automated face recognition machines will allow the computer to assume a new and very diverse

role in society. Its application will range in function from establishing a human-computer interface for

disabled children to spotting terrorists in a crowded airport(17). Any system which currently requires

passwords or personal identification numbers (PINS) will eventually provide access to the desired

information or service based on visual authentication of the user as a secondary or even primary level
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of security. Such systems include automated teller machines, computer accounts, and even the security

guard whose function is to compare the photos on restricted entry badges to the face of the wearer. The

advantage of an automated system is that we can eliminate the need to subject a human to mundane,

repetitive tasks and do away with inconvenient passwords and PINs which are easily lost, stolen, or

forgotten. Another use of such systems is to provide a new type of interface between man and machine.

The capability for computers to interface efficiently with humans in the same way that humans interface

with each other (verbal and nonverbal communication) is still very much a research topic; however,

the technology is mature enough to provide a human/computer interface to physically disabled persons

whose controllable motor skills have been reduced to facial expressions(17).

The problem description begins with an overview of the face recognition research being con-

ducted at the Air Force Institute of Technology. The capabilities and shortcomings as well as the current

state of that system are addressed. The problem statement is then given, and the research objectives

stated. Assumptions are then identified and the scope and limitations of the effort given. A statement

of standards is then made, followed by a discussion of the approach used to study this problem. The

chapter concludes with an overview of the remaining chapters of this thesis and a summary.

1.2 Background

The development of an automated face recognition system has been a topic of research at the Air

Force Institute of Technology since 1985. This research resulted in the Autonomous Face Recognition

Machine (AFRM) which was refined and improved over a number of thesis cycles(14, 16, 9, 15, 11).

The system was originally developed to verify Routh's Cortical Thought Theory (CTTX12). While

CTT faded into obscurity, the AFRM was continued for several thesis efforts. The actual AFRM system

no longer exists in the form of hardware and software; however the documentation from that system
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will be used to guide this thesis effort and to provide a means of gauging the results. The following

sections list the students who have contributed to the AFRM and the particular achievements of their

research. Other face recognition efforts will be discussed in chapter Two.

1.2.1 Russell was the originator of the AFIT face recognition effort. His system was a

somewhat manual process which mapped faces to a two-dimensional "gestalt" vector. This vector was

compared by the nearest neighbor algorithm to vectors stored in a data base(14).

1.2.2 Smith added automatic face location and windowing algorithms to Russell's face recog-

nition system which allowed the system to work autonomously. Thereafter the system was commonly

referred to by the AFRM acronym (Autonomous Face Recognition MachineX16).

1.2.3 Lambert considerably improved the segmentation algorithm used by the AFRM. He

reduced the recognition time to seconds. His segmentation technique was based on a frame subtraction

algorithm to detect motion. Once motion was detected, a process dubbed "Lambertization" was used

on the image to discount non-uniform luminance. An algorithm to determine if the segmented image

contained a face was run before passing the image over to the feature extractor(9).

1.2.4 Sander replaced the "gestalt" feature vector with a feature vector comprised of the

coefficients of the discrete Fourier transform (DFT) of the image. His system used the DC component

and the first two harmonics of the DFT. A second contribution was the addition of a back propagation

neural net as the classifier mechanism(15).

1.2.5 Robb added another harmonic to the DFT feature vector, fixed various bugs in the

original code, and thoroughly documented the system. This final version of the AFRM achieved a
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recognition accuracy of 73 percent for a training set of 45 subjects. Her thesis provides the best and

final documentation for the AFRM(l 1).

1.2.6 Current AFRM Research The AFRM was successful from the standpoint that it proved

the ability of a computer to detect and recognize an individual. Unfortunately, the 73 percent recognition

rate of the system is too low to be of practical use. Thus in the latest thesis cycle, Suarez and Goble

set out to increase the recognition accuracy of the system by exploring orthogonal feature sets. Suarez

explored the Karhunen LoAve Transform(17) while Goble researched the Discrete Cosine Transform(5).

These algorithms are used primarily in the data transmission arena as a compression scheme to reduce

images for efficient transmission while retaining the unique information necessary to reconstruct the

image at the receiving end. Both efforts resulted in recognition accuracies which were superior to

the DFT. The goal of this thesis is to implement each of these algorithms into an end-to-end, face

recognition system.

1.3 Problem Statement

The AFRM yields recognition results which are inadequate for operational systems. New

algorithms have been developed to overcome this problem. These algorithms will be implemented into

an end-to-end, face recognition system to meet a DoD requirement. This system will be used in an

application to provide controlled access to computer accounts by visually authenticating prospective

users.
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1.4 Research Objectives

The objectives of this research are:

"* Collect a database of test images.

"* Design and implement an end-to-end face recognition system based on Suarez's Karhunen Lodve

Transform feature set and the nearest neighbor classifier(17).

"* Evolve the nearest neighbor classifier routine into a K-nearest neighbor classifier.

"* Implement a version of the face recogntion system using the Discrete Cosine Transform feature

set developed by Goble(5).

"* Implement a KLT version of the face recognition system with a backpropagation neural network

classifier.

"* Provide recognition accuracy benchmarks for the resulting face recognition system.

"* Invesitigate the effect of using Gay's(4) automated segmentation technique on overall recogntion

accuracy.

"* Compare the results of a neural network classifier against that of the K-nearest neighbor classifier.

"* Investigate the problems and solutions to training and testing on images collected over several

days.

1.5 Assumptions

"* The entire system must be implementable using the resources available on a Sun Microsystems

SPARCstation.

"• The user attempting to login into the system is cooperative.
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"* The only motion in front of the camera is the user's face.

"* Recognition of faces will be limited to frontal views.

1.6 Scope and Limitations

The scope of this thesis is to study the performance of a prototype face recognition system. All

conclusions are based on empirical evidence.

1.7 Standards

The performance criteria for all of the techniques is classification accuracy, speed and user

friendliness. Accuracy is the most important criteria; though speed is high on the list of desired

characteristics. User friendliness will be implemented as much as possible given time and resource

constraints. The accuracy of classification of each technique is the ratio of correct classifications to the

total number of test data.

1.8 Approach and Methodology

As a part of this thesis, a software application is developed on the Sun Microsystems SPARC-

station. This application combines segments of existing software with new programs written in ANSI

C. The algorithms allow the user to collect real time test and training images, train the system using

those images, and perform recognition of potential users. All software is documented in Appendix A.
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1.9 Thesis Overview

Chapter Two presents a review of current literature related to face recognition systems. Chapter

Three provides a detailed description of the methodology. Chapter Four provides a description of the

test results based on the methodology. Chapter Five presents conclusions based on the test results in

Chapter Four.

1.10 Summary

This thesis developes an overall system to be used as both a baseline and a testhed for future

efforts in developing face recognition algorithms. The system performs image collection, segmentation,

feature extraction, training, and recognition.
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I1. Literature Review

2.1 Introduction

This literature review discusses the development and implementation of face recognition systems.

A typical face recognition process includes algorithms to perform segmentauon, feature extraction, and

classification. Segmentation is the process of separating the face (or head) of the individual to be

recognized from the clutter of the background. Feature extraction is a process which reduces the

dimensionality of the input image while maintaining the information necessary to uniquely distinguish

an individual. Classification is the algorithm which examines a given feature vector and "recognizes"

the individual in the input image.

During the last decade, several major institutions have invested considerable resources in de-

signing and testing such systems(6, 10, 18, 1). While various levels of success have been achieved,

research continues in an effort to find better algorithms to improve all phases of the recognition process.

The goal is to design a system with an acceptable recognition accuracy that is robust enough to operate

in real world conditions.

The DoD sponsor for this thesis desires a system which can operate within the computational

constraints of a Sun SPARCstation. Their objective is to use this system as a means to prevent

unauthorized access to computer accounts. Therefore the scope of this review will be limited to

systems which make use of accurate, robust, and computationally efficient algorithms.

The review begins with a discussion of the WISARD system developed at Brunel University

in the United Kingdom(6). Next a summary of the back propagation neural network effort being

conducted at Los Alamos National Laboratory will be given(l0). Then the Karhunen Lo6ve Transform
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technique being used at the Massachusetts Institute of Technology will be discussed(19, 18). After that

a description of the identity neural network research being done at the University of California San

Diego will be given(3, 1). Finally, the review will end with a short overview of the Karhunen Lorve

and Discrete Cosine Transform feature set research which was accomplished at the Air Force Institute

of Technology(17, 5).

2.2 WISARD

A face recognition system based on neural networks has been developed by a team of researchers

at Brunel University in the United Kingdom(6). This system is unique in that the perceptron style neural

network architecture is implemented in hardware using a VLSI random access memory (RAM). The

153 x 214 pixel input images are first binarized and then the pixels are collected into groupings of

four where each of the four pixels in the group was randomly selected from all 32,742 pixels available

in the image. The four pixel grouping is a feature referred to as a tuple. There are 8,185 tuples in a

given input image. The tuple groupings make the feature set sensitive to global patterns in the image;

though, this does not imply sensitivity to faceness. Each of the four bits for a given tuple is connected

to the address lines of the RAM (see figure 2.1). The remaining address lines are connected to a

binary counter which signifies which of the tuples is being input The output of the RAM for a given

tuple is either a one or zero. The 8,185 outputs for a given image are summed together to provide an

overall recognition score. The network with the highest score indicates the subject reconized in the

input image. The equivalent perceptron architecture is shown in figure 2.2. Using a single I mega-bit

RAM, a network (or discriminator) of this configuration is implemented for each subject in the training

set.

2-2



n-tuple N 2- I
input 4

function address iMbit Data Out
driven from a RAM
binary counter

Address 
Field

Figure 2.1. RAM Neural Network Implementation
(6)

Training the system consists of collecting an input image, grouping the image into tuples,

applying the tuples and binary counter output to the address lines of the RAM, and writing a binary

value of one into the accessed memory location. The training set for the system is gathered in real

time and the training images are not stored. The training process is conducted on a train/test cycle by

collecting an input image, training the system on the image, then testing the response of the network

to a new input image of the same subject This iterative process continues until the recognition score

is in excess of 120 or 95 percent of the maximum response; regardless of the position of the subject

or his expression (frontal views are required). On average, 200-400 images must be collected for each

subject; however, at a processing rate of 25 images per second, the network is trained on each individual

in less than 20 seconds. All training images are collected at the same sitting.

To perform recognition, the system collects a test face which is processed through each discrim-

inator. The test images used in this particular test were collected during the training session, although

the system is shown to work in real time as well. Classification is achieved by determining which
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Figure 2.2. Equivalent Neural Network
(6)

discriminator gives the highest response for that input image. Using these techniques the system was

trained for 16 subjects and achieved a 100 percent recognition accuracy(6).

A more industrial version of the system has been developed by Scientific Generics Ltd., of

Cambridge(2). They have improved the system by adding a sophisticated infrared illumination system

to the front end to overcome the variable effects of ambient illumination. In addition, a post processing

system has been added to give the time and location of a face within the input scene. The system is

built to provide accurate recognition at near real-time speeds.

2.3 Los Alamos National Laboratory

The Systems Concepts Analysis Team of the Space Sciences and Technology Division, Los

Alamos National Laboratory is investigating using a backpropagation neural network as a face verifi-

cation system. Their emphasis seems to be on how much and what kind of data should be collected to

train a neural network to recognize in general(10).
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They have collected over 11,416 images. Their original database started with 20 pictures each of

511 subjects. Recently the number of subjects in the database was increased by 249 to 760 individuals.

The new subjects were primarily college students from Auburn. Four or five training images of each

new subject were collected offline. All training images for each individual were collected within a one

minute interval. Constraints on the data were constant lighting conditions and a neutral background.

Subjects talked, changed expressions and ate cookies during the image grabbing process.

They implemented the backpropagation algorithm using a commercially available neural network

design application. A single person verification network was implemented and trained with the

following empirically derived parameters for each test subject:

"* Input nodes: 1400 (raw pixels)

"* Hidden nodes: 20

"* Output nodes: 1 (verfication)

"* Momentum: 0.50

"* Hidden layer learning: 0.30

"* Output layer learning: 0.15

"* Random initialization of weights from -0.1 to 0.1 (uniformly distributed)

"* Input vectors were rescaled to range from - 1 to 1

The data was sorted according to demographic categories such as sex, skin tone and hair color.

Various compositions of the data were used resulting in six different training sets. Some sets were

carefully organized by demographics while others were constructed by randomly selecting from all

subjects in the data base. Training sets were varied to include 5, 10, 15, and 20 percent of the data
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base. The network was trained for 15,000 iterations then tested for accuracy. The errors were divided

into two classes; false acceptances and false rejections. Images which fell between classifications were

counted as "don't knows".

The network was trained most accurately using larger percentages of randomly drawn data. Error

rates were minimal when 20 percent of the data was drawn randomly for training. Using this training

set false acceptance was found to be 0.02 percent while false rejection was 8.7 percent (10).

2.4 Massachusetts Institute of Technology

Turk and Pentland have developed a system which locates and recognizes faces in near-real-

time. Their system consists of a video camera, an image processor board, a Sun 3/160 dedicated to

motion analysis, and a second Sun SPARCstation which performs the recognition process; though both

algorithms could be executed on one computer.

I J~~) Spatl~oteniporal own Ha

Filtering ,T sodng Locato

Figure 2.3. MIT Face Recognition System
(18)

2-6



Segmentation of the head from the background is accomplished by the process shown in figurm

2.3. Motion detection is accomplished by a standard frame subt-action algorithm. The motion is

tracked over time to provide input to the motion analysis algorithms. The motion analysis program

applies heuristics to the detected motion using simple rules such as "the head is the smaller blob on top

of the larger blob (body)" and "the head must move in a contiguous motion (doesn't disappear at one

point and reappear in a new location)'. Once a head image is found a subimage is segmented out of

the original picture and sent to the recognition routines. The motion image is also used to provide an

estimate of scale in that the size of the blob that is assumed to be the moving head determines the siie

of the subimage to send to the recognition stage. The subimage is rescaled to match the dimensions

(number of pixels in row and columns) of the eigenfaces. While this technique works reasonably well,

Turk proposes that the eigenfaces be scaled to several sizes to produce a system which is more robust

with regard to scale(18). Head tilt is also a problem which has been addressed by using symmetric

patterns for frontal vi.ws, to develop symmetry operators which estimate head orientation. The image

can then be rotated to align the head; however, performance is marginal because the algorithm tends to

make all head objects circular.

Eigenfaces are the set of basis functions which span and define a face space. This basis set which

is optimally tuned to the training data is derived using the Karhunen Lorve principal component analysis

(7). Face images can then be transformed to face space by expressing them as a linear combination of

the eigenfaces. Thus an entire set of large dimensional images can be reduced to a very low number

of coefficients. The coefficients for each training image and the identity of the individual in the image

are stored in a data file for future recognition. Prototypes are taken at 15 degree increments to make

the system more robust.
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Recognition is carried out using a nearest neighbor classifier. Candidate faces detected by the

motion system are transformed to face space where the coefficients of the input face are compared by

Euclidean distance to each face in the training set. The recognition system runs in a loop and outputs

an image every time a face is recognized, which could be as much as two or three times per second.

limited testing has been accomplished using a training set of four subjects with two prototypes

for each subject. Three KL coefficients were used as the feature set. The test set consisted of seven

images, two images of subjects with images in the training set, three images of subjects who were not

included in the training set, a filtered and subsampled version of one of the original training images, and

a noisy version of one of the original training images. The classifier was set with a threshold of 20.0.

The system correctly classified the two test images with corresponding training images. It correctly

classified the unknown images as unknown (in that they fell below the 20.0 threshold). The filtered

image was correctly classified despite the effects of additional processing; however the noisy image

was pushed outside the threshold for correct classification.

2.5 University of California San Diego

Garrison Cottrell of the Institute of Neural Computation UCSD has investigated a face recog-

nition network which performs feature extraction and classification using back propagation neural

networks(l). As with Turk and Pentland, Cottrell's feature set is holistic consisting of a basis set of

images he refers to as holons. These images are very similar in appearance to Turk's eigenfaces (see

figure 2.4). To extract these features, Cottrell passes manually collected 64 x 64 pixel images through a

two layer auto-associator network consisting of 4096 input nodes, one for each pixel in the input image,

40 hidden layer nodes, and 4096 output nodes (see figure 2.5). The function of the auto-associator is

to reproduce the same image at the output as that received at the input for all images in the training set.
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Once the hidden layer is trained the output layer is removed and the response of the original hidden

layer is input into a single layer backpropagation network. This new network is configured with an

output node for each subject in the training set. The network is then trained on the training set using the

original hidden layer weights derived from the previous auto-associative network. Once the network

is trained, images are recognized by putting them into this new network and observing the output node

which gives the maximum response. The subject which corresponds to this output node is the person

in the test image.

Figure 2.4. Identity Net Holons

(3)

Using this technique Cottrell trained the network with images of 10 males and 10 females.

All subjects were UCSD college students. Images were manually centered and brightness as well as

variance was normalized before training began. No mention is made of how many images of each

person were actually trained on; however, each individual was asked to feign 8 different emotional

expressions as data for additional tests concerning recognition of facial expression. Thus the training

set consisted of at least 160 faces. The recognition accuracy for the system was 99 percent for all faces

in the test set
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Auto-association Network Classification Network

4096 Output nodes 20 Output nodes

4096 Input nodes 4096 Input nodes

Figure 2.5. UCSD Recognition System
(8)

2.6 Air Force Institute of Technology

As stated previously, two researchers at AFIT collaborated on their thesis efforts to jointly inves-

tigate orthogonal feature sets. Suarez investigated the Karhunen Lodve Transform (KLT) while Goble

researched the Discrete Cosine Transform (DCI). They worked together to develop the supporting

software necessary to test their feature extraction algorithms. Consequently, a very good foundation

for an end-to-end face recognition system was produced. The algorithms they developed include

preprocessing, feature extraction, and a nearest neighbor classifier in addition to each researcher's

particular transform. They collected an image database of 55 subjects with four training and two test

images for each subject. The 128 x 128 pixel images were manually collected in a very controlled

environment using a commercially available frame grabbing application. In collecting the images,

subjects sat in front of a neutral background at the same distance and looked directly into the camera.
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All pictures of each subject were taken within minutes of each other under constant lighting condi-

tions. The images were then preprocessed using a correlation algorithm first to center the subject in

the picture; then a gaussian windowing routine was used to highlight the center of the image (facial

features) and de-emphasize the outer edge of the picture (the background). After another run through

the centering algorithm the image was then transformed by either KLT or DCT.

2.6.1 Karhunen Loeve Transform In Suarez's system, figure 2.6, the images would now be

used by the KLT routine to create a basis set of images called eigenfaces. These images are then used

by a reconstruction algorithm to calculate the coefficients of the training images in face space. Suarez

tested the KLT feature set for single person verification and multiple person recognition.

For single person verification he trained a backpropagation neural network configured with five

input nodes, two hidden layer nodes, and two output nodes. The training set consisted of two classes

of images, targets and non-targets. 16 training images were used for each class. He extracted five

coefficients for each image and used these features to train the network using the hold one out method to

train and test. Using this method he achieved a 92 percent recognition rate for single person verification.

The results do not show individual results for false acceptance and false rejection.

Suarez tested the KLT feature set for multiple person recognition using only the nearest neighbor

classifier. For this test he used four training images for each of 55 test subjects. He extracted 16

coefficients for each image. The feature set was tested using two test images of each subject, collected

on the same day as the training images. He achieved a 95 percent recognition accuracy for this test(17).
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2.6.2 Discrete Cosine Transform In Goble's system, figure 2.7, the images are directly

transformed by the DCT software. The coefficients for each image, as well as the name of the subject

in the image, are stored in a data file.

Window
Input Image and

Center

ExtractForm
Face -Sub-Blocks

Take DOT Input
of 1 Eigenvalues

Sub-Blocks to Net

Figure 2.7. DCT Feature Extraction Process
(5)

Goble performed the same single person verification test using DCT as Suarez did using KLT.

His training set also consisted of four images each of 55 people. The test set contained two images of

each of 55 subjects. His feature set differed in that he used 7 DCT coefficients for the backpropagation

neural net as opposed to Suarez's five coefficients. His false accept rate was 2 percent while his false

reject rate was 3.5 percent.
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For the multiple person recognition test Goble extracted 20 DC1 coefficients from four training

images of 55 different subjects. He tested using two test images of each subject and only used the

nearest neighbor classifier. This resulted in a recogntion accuracy of 95 percent(5).

2.7 Summary

In this chapter the operation, training, and testing procedures of several face recognition systems

have been described. The performance of these systems are used as benchmarks by which to gauge

the system developed in this thesis. Many research efforts have achieved various levels of success

in developing the image collection, segmentation, feature extraction, and classification algorithms

necessary to perform face recognition. A common thread in each effort described here is that each

utilized holistic or global feature sets; however, the specific method employed by each varies greatly.

Also, it is apparent that each of these systems has been tested under laboratory conditions which do not

necessarily reflect a real world environment. The most common weakness was that test and training

images were collected in a single sitting. In a practical application, training images can be collected

at a single sitting if desired but test images must be collected throughout the operating lifetime of

a face recognition system. In addition, constraints such as neutral background as well as constant

distance, position and lighting should be eliminated. The algorithms should be integrated into a single,

self-contained application capable of performing face recognition in an end-to-end process from image

collection thru preprocessing and feature extraction to classification.
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III. Methodology

3.1 General

The main objective of this thesis was to implement and test an end-to-end, face recognition

system to determine the practicality of its use in real world environments such as an office. Three

versions of the system were implemented (see figure 3.1). All three versions make use of a common

front end to collect, segment and preprocess the images. This front end is the result of integrating

the preprocessing algorithms developed by Suarez(17) with a real-time image collection and face

segmentation algorithm developed by Gay(4). The difference in the three system versions concerns

the feature set and classifier utilized by the given version. The first version uses the Karhunen Lomve

Transform (KLT) feature set and a K-nearest neighbor (KNN) classifier. The second version maintains

the KLT feature set but employs a backpropagation neural network classifier (BPNNX8). Finally the

third version uses the Discrete Cosine Transform (DCT) as the feature set and inputs coefficients into

a KNN classifier. The software which implements these three versions is presented in APPENDIX A.

rFatkm Exmaokn

Figure 3.1. Three Versons of the Face Reconiion System
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3.2 Common Front End Processing

All versions of the software make use of a common set of front end processes. The function of

these processes is to collect an image of an individual and prepare it for whatever feature extraction

process is desired. The algorithms are the same regardless of which feature set or classifier is used or

whether the system is training or recognizing. The block diagram for the common front end is shown

in figure 3.2

Initia Image Segmented Image Gaussed image

',ý ý framegmbber A~WtmPreprocesi E3=&acbr

Figure 3.2. Common Front End System

3.2.1 Image Collection and Segmentation The segmentation algorithm developed by Gay in

a collatoral thesis(4) includes the capability to grab images in real time using a CCD camera and

a VideoPix image processing board (again refer to figure 3.2). The algorithm is based on motion

detection using frame subtraction and slope analysis to determine the portion of the image which is

most likely the head and segment that region from the 640 x 480 original image. The resulting image is

a 32 x 32 pixel image. The algorithm is for the most part independent of background although as stated

in chapter one, the assumption is that the only motion in front of the camera is the user. To an extent

3-2



the segmentation algorithm reduces sensitivity to scale that normally breaks down the KLT algorithm.

This is because the entire area of motion is mapped into the same 32 x 32 pixel image no matter what

distance the user is from the camera. Gay's thesis explains this side benefit in more detail.

3.2.2 Preprocessing as done by Suarez consists of two algorithms. The first procedure,

CENTER.C, does a correlation between a reference image and each input image. The reference image

can be any image where the subject is fairly well centerd in the picture. The offset of the peak correlation

is used to shift the contents of the image such that the face in each picture is centered. After the image

is centered it is multiplied by a gaussian window using GWIND.C. The logic here is to enhance the

inner part of the picture (the facial features) while de-emphasizing the outer portion of the image (the

background). The image is then again centered using CENTER.C; however the reference image is now

a gaussianed version of the original correlation reference. Suarez's software has been modularized as

C procedures and the interfaces redesigned to automate the original process. CENTER.C was derived

from Suarez's CLATE5.C. The modularized version of GWIND.C was not renamed.

3.3 Feature Extraction

As mentioned previously, two versions of the recognition system make use of a feature set based

on KLT. The third version employs the DCT feature set. The software which performs these functions

and the modifications made to the original versions are described in the following paragraphs.

3.3.1 Karhunen Loeve Transform The KLT software consists of two modules (see figure 3.3).

KLT.C calculates the average face of the training set as well as the basis set of eigenfaces from which

the KL coefficients are extracted. KLT.C is a modified version of Suarez's KLTRANSFORM2.C.

COEFFICIENTS.C calculates the coefficients which when multiplied by the eigenfaces in a linear
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combination and then summed with the average face provide the least mean square error reconstruc-

tion of the original image. These coefficients are written to a data file along with the subject name

associated with those coefficients. There are two versions of the coefficients software. COEFFI-

CIENTS.C provides a data file of coefficients consistent with that required by the KNN classifier, while

NETCOEFFICIENTS.C results in a data file formated for the BPNN classifier. Both versions of the

coefficients routine were derived from Suarez's RECON.C algorithm.

KMN Format
1234Sclp

Figure 3.3. T Featur Extraction

3.3.2 Discrete Cosine Transform The DCg software consists of only one algorithm. The

algorithm simply calculates a specified number of DCT' coefficients and stores them in a data file along

with the name of the subject associated with the ilnage(see figure 3.4). The routine is a modified

version of Goble's DCT.C algorithm and is called MDCT.C.

3.4 ClassIifers

As mentioned before the face recognition system will be implemented in three versions. The

first two will differ in the feature set utilized with the first being the KLT and the second the DCi.
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Figure 3.4. DCT Feature Extraction

Both will send coefficients to a K-nearest neighbor classifier to do recognition. A third version will

again use the KLT feature set but the coefficients will be input to a backpropagation neural network for

classification. The algorithms which implement the two classifiers are described below.

2 J125
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Figure 3.5. Back Propagation Neural Net Recognition Process

3.4.1 Backpropagation Neural Network The neural network algorithm used in this application

was developed in an earlier AFIT dissertation(13). These algorithms have been modifed and tested

in a collatoral thesis(8). The routine MLP.C is compiled in both a training configuration and a test

configuration. MLPTRN is compiled without the no train (NOTRN) flag set while MLP.TEST is
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compiled with NOTRN set. The difference between the two is that the training configuration includes

an iteration loop to update and learn the weights necessary to classifiy a given image in a training set.

The testing configuration is compiled to read the weight file which was stored in the training procedure,

pull in the coefficient file for the test image and output the name of the individual associated with the

output node which responds.

3.4.2 K-nearest neighbor K.NEAREST.C is an implementation of a K-nearest neighbor clas-

sifier where K is chosen to be the number of training images used for each face in the training set. As

shown in figure 3.6 the inputs to the classifier algorithm are the train.coefs file which was created in the

training phase, and the test-coefs file generated from the input image by the recognition software. The

resulting output is a print statement identifying the subject in the test image. The K-nearest neighbor

uses a scoring technique in which the prototype nearest the test image receives a score of K while the

second nearest neighbor receives a score of K-I. The most distant K neighbor receives a score of one.

After the scoring of the neighbors is complete, all of the scores for a given name are summed together.

The name associated with the highest score is selected as the identity to the test face. This procedure

eliminates inaccuracies associated with a simple nearest neighbor which are caused by outlier training

faces.

3.5 Training Software

The modular routines for feature extraction and classification, as well as the grab, segmentation,

and preprocessing routines can be combined to generate various versions of training and testing

programs where the feature extraction and/or classifier routine can be easily changed by calling a

different module. In addition programs can be written to use previously stored images (without
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Figure 3.6. K-nearest neighbor Recognition Process

performing a grab) and those images can either be preprocessed or not, depending on the designer's

needs. Three training programs have been assemble from these modules to implement the versions of

the system outlined in this thesis. The descriptions of these programs are given below.

3.5.1 KLT KlN System TRAIN.C implements the KLT feature set and generates coefficients

in a format compatible with the K-nearest neighbor classifier. The flow of the program is shown

in figure 3.7. This program performs a user interactive training image collection, preprocesses the

images, forms the eigenface basis set and extracts the desired number of coefficients from the training

images. Those coefficients are then written to the TRAINCOEFS file to be used by the recognition

program. TRAIN.C is executed by entering the command "train" at the command line.

3.5.2 DCT KNN System TRAINJ.CT.C has much of the same functionality as TRAIN.C.

The exception is that the resulting coefficients are calculated using the DCr rather than the KLT. The

gray box in figure 3.7 shows the alternate flow followed by TRAIXThL.C. Like TRAIN.C this

program performs a user interactive training image collection, preprocesses the images, and extracts

the desired number of coefficients from the training images. Those coefficients are then written to the

3-7



TRAINCOEFS file to be used by the recognition program. TRAINJXT.C is executed by entering

the command "train.dct" at the command line.

SawM*M -Qw

....... ...........

Figure 3.7. TRAIN.CfIRAINJ)CT.C Flow

3.5.3 KLTBPNNSystem The flow diagram ofTRAINNET.C is given in figure 3.8. TRAIN.NET.C

implements the KLT feature set and generates coefficients in a format compatible with the multi-layer

perceptron classifier. This program performs a user interactive training image collection, preprocesses

the images, forms the eigenface basis set and extracts the desired number of coefficients from the

training images. Those coefficients are then used by MLPTRN to calculate a set of weights to form
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the decision surface which separates the training classes. These weights are stored in a weights file to

be used by the recognition software. TRAINNET.C is executed by entering the command "train-net"

at the command line.

WIns tmap
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Figure 3.8. TRAIN..NET.C Flow
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3.6 Recognition Software

For each of the three versions of training software, a corresponding version of recognition

software has been developed. The names and descriptions of those routines are given below.

3.6.1 KUT KNN System VERIFY.C implements the recognition routine utilizing the KLT

feature set and the k-nearest neighbor classifier (refer to figure 3.9). This routine performs a user

interactive test image collection process, preprocesses the test image and extracts the KLT coefficients

from that image. These coefficients are then sent to the k-nearest neighbor for classification. VERIFY.C

is executed by entering the command "verify" at the command fine.

3.6.2 DCT KNN System VERIFYDCT.C again, makes use of most of the modules used in

the KLT recognition software. The major difference is that the DCT coefficients are calculated for

the test image instead of the KLT coefficients. The program performs a user interactive test image

collection process, preprocesses the test image and extracts the DCT coefficients from that image.

These coefficients are then sent to the k-nearest neighbor classifier for classification. VERIFYDC.C

is executed by entering the command "verify.dct" at the command line.

3.6.3 KLT BPNN System VERIFYNET.C implements the recognition routine utilizing the

KLT feature set and the multi-layer perceptron classifier as shown in figure 3.10. This routine

performs a user interactive test image collection process, preprocesses the test image and extracts the

KLT coefficients from that image. These coefficients are then sent to the neural net classifier for

classification. VERIFY.NET.C is executed by entering the command "verify-net" at the command

line.
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"You wee recognlzed as kunyon."

Figure 3.9. VERIFY.C Flow

3.7 Test Descriptions

In his thesis, Suarez evaluated his feature extraction software using a database of 55 users with

four images of each nser(17). With the addition of the real-time grab and segmentation algorithms, the

constraints on the input images for this thesis can be relaxed to better emulate real world conditions.

Thus a new and much less rigid training set has been collected to more fully test the robustness of the

system.
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Figure 3.10. VERIFYNET.C Flow

The KLT KNN and KLT BPNN systems were evaluated using three different test methods and

two different databases. The first test gauged the accuracy of the systems for a moderate sized training

set collected over a short period of time. The second test utilized a training set of only four people but

provides detailed results of performance over a seven day period of time. The third test made use of

the previous training sets and provides a very detailed evaluation of the systems performance over a

large number of recognition attempts. The following sections provide the details of each test.
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3.7.1 23 Subject - Two Day Test The data set consisted of two sets of images. The first set

contained 115 images, 5 images for each of 23 users. The second training set also consists of 115

images, 5 images for each of the same 23 users. The difference between the two data sets is that they

were taken on two different days. Same day recognition of the system was evaluated by first training

the system on 4 images each of the 23 subjects collected on the first day. The fifth image of each

subject was then input to the system as a test image. After that, the same procedure was accomplished

for the images collected on the second day. The system was trained with four of the five pictures of

each subject and tested with the fifth. The total number of correct recognitions for both days was then

summed together and divided by the total number of tests to arrive at a standard same day recognition

rate. The system was then trained on all 115 images from the first day and tested using all 115 images

from the second day. Conversely, the system was trained using the 115 images from the second day

and tested using the images from the first day. The total recognition accuracy for the two tests was

again calculated. Finally, the system was trained using two images of each subject from the first day,

and two images of each subject from the second day. The remaining fifth image for each subject for

each of the two days (total of 46 images) was then supplied as the test set for the system.

3.7.2 30 Subject Manually Segmented - Two Day Test To test the effect of the segmentation

algorithm on the overall recognition accuracy of the system, a data set which was collected in a collatoral

thesis was used. The data set consisited of 300 total images of 30 different subjects. Each subject had

10 images in the data set. 5 of the 10 images were collected at an initial sitting, and the remaining

5 were collected at a later sitting. The subjects were positioned in front of a neutral background at a

constant distance from the camera. The 23 Subject test procedure was performed using this data. The

results of the two test were compared.
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3.7.3 Four Subject - Seven Day Test The objective of the second test was to determine if the

system improved when training images were taken over a period of time. To make this evaluation, a

training set of four users was collected over a period of seven days with 7 images of each user taken

everyday (four training images and three test images). The system was then trained using only the

images of the first day. The one day system was then tested using each of the 21 test images collected

over the seven day period. After recording the recognition score for the training set, the system was

trained again using images from both the first and second day. The 21 test images were then rTu again

and the score recorded. This additive training technique was continued, testing the 21 images each

time, until the full seven day training set was utilized. Recognition accuracy for each training set was

documented.

3.7.4 Long Term Recognition Test The objective of this test was to determine the recognition

accuracy for an individual user over many recognition attempts. Several of the training sets from

previous tests were used. Three tests were run using the KLT versions of the 23 Subject - Two Day

Test data. The systems were trained using the same day, different day, and multiple day versions of the

23 subject training images. Each system was then trained using the best results from the Four Subject

training set. Ten recognition attempts were made on both systems each day for ten days (a total of 100

recognition attempts for each system) with the same person attempting to be recognized each day.

3.8 Summary

Three versions of a face recognition application are developed in this thesis. The difference

in the three versions are the variations of the feature extraction and classification algorithms used.

The first version uses the Karhunen Lodve Transform to extract features and a K-nearest neighbor as
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the classifier. The second version also makes use of the KLT but feeds the coefficients obtained to a

backpropagation neural network classifier. Finally, version three uses the Discrete Cosine Transform

to extract the features which are then input to a K-nearest neighbor classifier. The KLT based systems

will be analyzed in a series of recognition tests to establish benchmark accuracies. The results of these

tests are reported in the next chapter.
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IV Results

4.1 Introduction

This chapter describes the results of tests performed on the face recognition application developed

in this thesis. Three separate versions were implemented in this thesis. All have the same image

collection, segmentation, and preprocessing routines. They differ in the feature extraction algorithm

and/or the classification scheme. The first version is based on a Karhunen LoAve Transform (KLT)

feature extraction algorithm and makes use of a K-nearest neighbor classifier (KNN). The second

version differs in that it employs a Backpropagation Neural Network (BPNN) classifier as opposed

to the K-nearest neighbor. These two versions will be tested to document benchmark accuracies to

compare against applications developed by other researchers. Finally, the third version which is based

on the Discrete Cosine Transform (DCT) feature extraction algorithm and uses the K-nearest neighbor

classifier was implemented to demonstrate the ability to easily make updates, changes, or replacements

to any algorithm in the application.

Testing was accomplished using five image sets, each differing in the number of subjects and the

number of sittings over which the images of a particular subject were collected. Various combinations of

training and test images were drawn from these five data sets to explore the strengths and weaknesses of

each version of the recognition application. All images were collected with the grab and segmentation

routines developed for the recognition applications with the exception of one set of images which was

manually segmented to evaluate the effect of automated segmentation on the overall accuracy. The five

tests are denoted by the image set used for the test and are uniquely defined by the number of subjects

and the time period over which the images were collected. The tests which made use of segmented

data are:
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* 23 Subject - Two Day Test

* Four Subject - Seven Day Test

* Single Subject Verification (Combination of Previous Image Sets)

* Single User - Long Term Test (Collected Over Several Weeks)

The 30 Subject -Two Day Test made use of images which were manually segmented. The details

and results of each test are described in the following paragraphs.

4.2 23 User - Two Day Test

The purpose of this test was to determine the accuracy of the system for a fairly large number

of subjects where the training and testing images were collected on different days. The image set used

consisted of a total of 230 images, ten images for each of 23 subjects. The first five images of each

subject were collected in an initial sitting. The last five images of each subject were collected a number

of days later in a second sitting.

The feature set for the KNN system consisted of eight coefficients while the BPNN made use of

20 coefficients and 40 hidden layer nodes leading to 23 output nodes (one for each subject in the image

set). Rather than use the same number of coefficients for each version of the application, the number of

coefficients for which the algorithm seemed to perform best was used. This best number of coefficients

was determined in an iterative trial and error process. Three versions of the test were run to evaluate

the recognition accuracy of both the KLT/K-nearest neighbor(KNN) and KLT/neural network (BPNN)

recognition applications.
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Table 4.1. Three test results using image sets collected over two days. Results are given for test
images collected on the SAME DAY as the training images, a DIFFERENT DAY than
the training images, and for test and training images collected over MULTIPLE DAYS.
Columns one and two are for 23 class data which was automatically segmented. Columns
three and four show the results of comparable tests using 30 class data which was manually
segmented. The KNN results are based on an eight coefficient feature set while the BPNN
used twenty coefficients

__I KNN I BPNN I Manual Segment KNN I Manual Segment BPNN

[SAMEDAYAVG 1781 76% 1 W% [197%

[DIFFERENT DAY AVG 129% 134% 140% 1 53%
[MULTIPLE DAY RESULT J 67% ]74% 185% [95%

4.2.1 Same Day Test The purpose of this test was to obtain a recognition accuracy which could

be compared to the tests performed by Suarez(17). Suarez's images were collected during a single

sitting for each subject and had constraints such as neutral background, constant distance, etc., in order

to appropriately test the KLT feature set. The aim of the current test is to determine the decrease in

recognition accuracy due to loosening those constraints and allowing the segmentation algorithm to

locate the subject in an uncontrolled background.

Both the KNN and BPNN applications were initially trained using four images for each of 23

subjects. A fifth image of each subject, which was not included in the training set, comprised the test

set. Both the test and training set images for each subject were taken at the initial sitting. The 23 test

images were input to both the KNN and BPNN system. Individual scores were then calculated and

recorded for each system. Following that each system was retrained using four images of each subject

taken at the second sitting. The test set consisted of the fifth image for each subject also taken at the

second sitting. Both the BPNN and KNN were again tested on the second 23 image test set. The

recognition scores for both systems were again determined and the score form the first and second days

were averaged together to determine an overall same day recognition score. Table 4.1 shows that the
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KNN achieved an overall same day score of 78 percent while the BPNN correctly identified 76 percent

of the test images These numbers are significantly lower than the 95% Suarez(17) achieved using his

data set due to the constraints Suarez used in gathering his data (see Effect of Segmentation section).

4.2.2 Different Day Test The purpose of this test was to determine the potential decrease in

recognition accuracy due to training on a set of images and then testing on images of the same subjects

but collected at a later date. The training set consisted of four images of each subject collected on the

first day. The test set was the five images of each subject collected on the second day. The recognition

score for both systems were calculated and the training and test sets were then reversed such that the

training set was made up of four images for each subject from the second day and the test set was the

five images of each subject collected on the first day. The recognition accuracy was again determined

and the results of the two tests were averaged into an overall score. For this version of the test, the

KNN decreased to an overall score of 29 percent while the BPNN fell to 34 percent (see table 4.1).

As expected the accuracies are markedly lower than those of the SAME DAY TEST. It appears that

subtle changes in both the subject (hairstyle, facial features, clothing) and the environment (lighting,

background bordering the user's face, distance to camera) have enough effect to cause errors to occur.

4.2.3 Multiple Day Training The purpose of this test was to determine if the decrease in

accuracy due to training and testing on different days could be overcome by training on images from

both days. In addition this test determines to an extent whether or not superposition applies to the

Karhunen Lo6ve Transformation. The expectation was that if the training images were used from two

separate days and only images collected on those two days were included in the test set, the resulting

recognition accuracy should be close to the average recognition accuracy of the same day tests.
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Both the KNN and BPNN systems were trained using four training images of each subject from

each of the two collection days. The test set consisted of the remaining two images, each collected on a

different day, of each subject. The KNN raised to an accuracy of 67 percent while the BPNN returned

to 74 percent. While the BPNN was somewhat close to the original same day accuracy, the KNN result

was low to be considered approximately equivalent to the previous score. Here it seems as though the

BPNN can better generalize with the limited data available such that the effect of subtle changes in the

environment and/or the user can be de-emphasized. Given a greater number of training images, both

systems would tend toward their respective SAME DAY TEST accuracy.

4.3 Effect of Segmentation

The purpose of this test was to determine the change in overall accuracy of the system due to the

segmentation algorithm. To perform this test, a data set was obtained from a collateral thesis effort(8).

This data set consisted of ten images each of 30 different subjects. Like the original data set, five

images of a given subject were taken during an initial sitting and the remaining five were collected

at a later sitting. The difference was that this data set was collected in a controlled environment

(neutral background, constant distance from camera, and careful positioning of the test subject) and

segmentation was performed manually.

The Same Day, Different Day, and Multiple Training Day tests were repeated using the new

images. The results as shown in columns three and four of Table 4.1 show that the segmentation

algorithm decreases overall accuracy by approximately 20 percent. There are several factors which

contribute to the lower auto-segmentation score. The segmentation algorithm is based on the user's

motion envelope during the image collection period. If displacement is greater during one image than

that of the next, the scale may be somewhat different. The KILT is very sensitive to scale(17) as well
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as shift and rotation. Shift is not as much of a problem due to the correlation routine used to center the

subject in the image. Sensitivity to scale could be reduced by gathering more training images.

4.4 Four Subject -Seven Day Test

The purpose of this test was to provide a more detailed analysis of the sensitivity of both the KNN

and BPNN applications to images taken over time. While the 23 user test points out the detrimental

effects of time on large systems, the four user test attempts to provide a solution to the problem albeit

for a smaller number of users. The data set for this test was made up of 196 images. There were four

individuals in the data base with 49 images each. Each subject made seven visits to the lab to have

images collected. Four training and three test images were collected for each subject each day for a

total of 28 training images and 21 test images for each of the four people.

The procedure for testing was an iterative process. First each system was trained on each person's

four training images from day one and then tested on all 21 test images of each person. The system

was then retrained using the training images from the second day in addition to the firsL The accuracy

of the system was again tested using all 21 test images for each subject. The system was then trained

using three days of training images, tested, trained again, and so on until the training images for all

seven days had been used.
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Seven Day Test Using KNN
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Figure 4.1. Recognition accuracies for four class data. Four KLT coefficients were used. The training
and test sets were collected over seven days. The same test set is used for every training
day and includes all test images from all seven days. The training set for each column
consists of all training images collected up to and including the training day listed on the
X-axis.

4.4.1 K-nearest neighbor The KNN system was trained using four KLT coefficients for each

image. This number was determined based on the results of the 23 subject test and differs with the

results of Suarez(17) who determined that the number of coefficients used should be roughly equal to

one third the number of classes to be recognized. It appears that as the number of training images

increase for each class, the number of coefficients must also increase in order to adequately separate

them in KL space. Suarez always used four training images per class. No hard and fast equation

involving the number of training images and the number of classes is as yet apparent. The results for

each iteration of the KNN system are given in figure 4.1. Notice that the accuracies decreased on day

four and six even though the training set contained more training images.

Table 4.2 shows the accuracy for a given test set at each training iteration. It was expected that

the accuracy for each training set would fall off drastically once the test sets which had no conesponding
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Table 4.2. Recognition accuracies for four class data using a K-nearest neighbor classifier. Four KLT
coefficients were used. The seven test sets were collected on each of seven days. Each
column shows the accuracy for a given day's test set as the system is iteratively trained on
the images from an increasing number of training days.

I Train I Train 1,2 Train 1-3 Train 1-4 Train 1-5 Train 1-6 Train 1-7

#Prototypes 4 8 12 16 20 24 28

Test Set 1 92% 100% 92% 83% 100% 92% 92%
Test Set 2 58% 58% 67% 58% 75% 58% 75%
Test Set 3 67% 83% 92% 83% 100% 83% 92%
Test Set 4 67% 100% 92% 83% 100% 92% 100%
Test Set 5 67% 58% 75% 75% 75% 75% 92%
Test Set 6 50% 83% 83% 67% 67% 75% 83%
Test Set 7 67% 92% 100% 100% 100% 100% 100%

[OVERALL 167% 182% 186% 182% 188% 182% 190%

training images in the training set had been reached; however, the accuracy for a given test set does

not seem to correspond to whether it has images in the training set or not. These results show that

differences in scale, shift, and rotation are more important than day to day differences in the subject

and/or the image collection environment. Note also that the accuracies for all test sets in column one

are much higher than the different day results from the 23 class KNN test althought with the exception

of the number of classes, these tests are very much the same procedure. The reason the results are so

much higher for the four class test is that the statistical chances of guessing correctly are much higher

for four classes than for 23 classes. In addition there is less ambiguity or overlapping with four classes

than with 23 classes, even though eight coefficients were used in the 23 class test and only four were

used in the four class test.

4.4.2 Back Propagation Neural Network The network was configured with 20 input nodes,

40 hidden layer nodes and four output nodes. Again, this configuration was based on results from the

previous 23 User Te't. The results for each iteration of the BrNN system are given in figure 4.2. Here
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the recognition accuracy continually increased as the training images from each day were included in

the training set. This differs with figure 4.1 where the accuracy was sometimes lower after adding a

new day of training images. This leads to the conclusion that the BPNN classifier generalizes more

effectively on the available training images than does the KNN.

Seven Day Test Using BPNN
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o 40
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1 2 3 4 5 6 7
Training Day

Figure 4.2. Recognition accuracies for four class data using a BPNN Classifier and 20 KL coefficients.
The accuracy is four 21 test images taken 3 per day for 7 days. The system was first
trained using data from day 1, all 21 test images were tested and the system trained again
using day I and day 2 training data. This iterative process continued until the final system
was trained on all 7 training sets. The columns represent the accuracies of the entire test
set on each of these systems.

Table 4.3 shows the accuracy for a given test set at each training iteration. In general, recognition

accuracy does increase for each test set with the addition of a new day of training images. Again this is

due to the ability of the BPNN to generalize on the training images. Also note that test sets with outlier

problems score low using initial training sets but improve to 100% accuracy after several training sets

are added to the system (see test set 6).
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Table 4.3. Recognition accuracies for four class data using a BPNN Classifier and 20 KL coefficients.
The accuracy is four 21 test images taken 3 per day for 7 days. The system was first trained
using data from day 1, all 21 test images were tested and the system trained again using
day 1 and day 2 training data. This iterative process continued until the final system was
trained on all 7 training sets. The columns represent the accuracies of the entire test set
on each of these systems.

_ _Train l Train 1,2 Train T-3 Train 1-4 Train 1-5 Train 1-6 Train 1-7

#Coefficients 4 J8 12 16 20 24 28

Test Set 1 92% 100% 100% 92% 100% 100% 100%
Test Set 2 75% 75% 75% 92% 92% 100% 100%
Test Set 3 92% 92% 100% 92% 100% 100% 100%
Test Set 4 92% 92% 92% 100% 92% 100% 100%
Test Set 5 75% 92% 92% 100% 100% 100% 100%
Test Set 6 58% 83% 75% 83% 83% 100% 100%
Test Set 7 92% 92% 92% 100% 100% 100% 100%

[OVERALL 182% 189% 189% 94% 95% 1100% 1100%

4.5 Accuracy versus Kfor the K-nearest neighbor

Having run several tests to this point using the K-nearest neighbor voting scheme as a classifier,

the data was analyzed to determine the most effective value of K for the algorithm. Two plots were

made, one using the results of the fourth day of the Four Subject - Seven Day Test, and the other the Long

Term Recognition Test results using the training data of the 23 Subject - Different Day Test with the

KNN classifier. Figure 4.3 shows that accuracy increases with K while figure 4.4 shows that accuracy

decreases with K. While the results of theses tests seem to be contradictory, further examination reveals

that these systems represent two very different feature spaces. The eight coefficient feature space of the

23 class problem is of much higher than that of the four coefficient four class problem. Consequently,

a more complex set of classes can be separated in that space. However, there are very few prototypes

to define the boundaries of these classes. The sparse number of prototypes assign too much importance

to a given prototype which may or may not be an outlier from another class. The results need to be
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averaged to arrive at a more correct solution. Recognition accuracy won't be too good regardless of

the value of K due to poor boundary definition.

Accuracy vs. K
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Figure 4.3. This graph shows the recognition accuracy obtained by testing 100 test images of the
same subject collected over several months. The training set consisted of 23 classes with
8 prototypes collected four at a time on each of two days. Each column repasents the
accuracy associated with a particular K value for the K-nearest neighbor algorithm.

On the other hand the feature space defined by the second set of parameters is not quite as

voluminous as the previous system; however, it contains only four classes. These classes are populated

with a fairly large number of prototypes as compared to the rpior system. This dense population of

prototypes provides fairly good results no matter what value of K is chosen. Still, the accuracy can

be increased by reuding the number of prototypes used in the determination because prototypes on the

fringe of a given class do not use prototypes on the fringe of some other class in the calculation. K

should be kept to a value of I or 2.
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Accuracy vs. K
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Figure 4.4. This graph shows the accuracy of testing 21 test images collected 3/day over 7 days on
a system which was trained with 16 prototypes for each class. These prototypes were
collected over 4 days. Each point on the curve represents the accuracy associated with a
particular K value for the K-nearest neighbor algorithm.

4.6 Long Term Recognition Test

The purpose of this test was to simulate the login activity of a single user over a long period of

time. The data set collected for this test is made up of a single user. There 100 images in the data set

were collected five or ten at a time over a period of several weeks. All 100 images are used as a test

set for seven of the previously trained systems. The configurations used from the 23 Subject - Two

Day Test were both the KNN and BPNN version of the Different Day and Multiple Day Tests. The

configurations tested in detail from the Four Subject - Seven Day Test were BPNN Day 7 and Day 6 as

well as the KNN version of Day 7. Results for the test are given in table 4.4.

The difference between original results and the results of this test differs depending on what

system is tested. Both versions of the different day test seemed to show improved recognition capability

on the order of a 15
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Table 4.4. All systems listed in column one were trained in previous tests. The accuracies obtained
in the original test are shown in column two. Column three shows the accuracy of the
given system when the original test set is replaced with a test set consisting of 100 images
of a single subject collected over several weeks. The subject was a member of all previous
training sets though none of the 100 images in the new test set were used in any training
set.

I # Classes # Coefficients [Original I Long Term

KNN Different Day 23 8 31% 50%
BPNN Different Day 23 20 37% 51%
KNN Multiple Day 23 8 67% 69%
BPNN Multiple Day 23 20 74% 55%
KNN Four - Day 7 4 4 90% 24%
BPNN Four - Day 7 4 20 100% 97%
BPNN Four - Day 6 4 20 100% 100%

4.7 Single Person Verification

The purpose of this test was to determine the verification accuracy for a BPNN verification

system. The data set for this test was made up of two classes, a target class and a non-target class. The

non-target training images consisted of 2 images of each of 22 subjects. Each of the two images was

collected at separate sittings. The target training set consisted of 30 images of a single subject. Five

images were collected at sitting one, five more at sitting two, and the last 20 images were collected

four at a time over five sittings. The target images made up roughly forty percent of the training set

with the non-target images making up the remaining sixty percent. The test set for the non-target class

consisted of two images each for each of 22 subjects and again each image was collected at separate

sittings. The target test set consisted of 10 images of the single subject. The first nine images were

collected three at a time over three sittings and the tenth image was collected at a fourth sitting. All

test images had corresponding training images (the training images came from the same sittings as the

test images) but not all training images had corresponding test images.
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The network was configured to accept twenty KL coefficients at the input layer. These inputs

feed forty hidden layer nodes and of course two output nodes signified the target and non-target classes.

The network was trained to a 100 percent accuracy on the training set in 600 iterations. The false

accept rate for the network was two percent, while the false rejection rate was forty percent.
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V Conclusions

5.1 Introduction

This chapter states the conclusions formed by the results of the tests performed in chapter Four.

The chapter begins with the conclusions drawn from the 23 Subject - Two Day Tests. Next the results

of the 30 Subject, Manually Segmented - Two Day Test will be discussed. Insights provided by the

Four Subject - Seven Day Test are then be provided. Then a short discussion on the accuracy of the

K-nearest neighbor classifier versus the value of K will be given. Conclusions drawn from the Long

Term Recognition Test will then be shown, and finally, the Single Person Verification Test is discussed.

5.2 23 Subject- Two Day Test

This test addresses the problems associated with training a system to recognize based on images

taken at a specific instance in time and then expecting that training set to generalize to images taken

at any time later. This multiple day problem causes large decreases in recognition axuracy. The lose

in accuracy is the result of the subtle differences in both the image collection environment (such as

luminance, distance to camera, shift, position, and scale) and the subject (such as hair shape, beard

growth, facial appearance at different times of day) when viewed over a period of time. little attention

has been given to this problem, certainly none of the systems described in the literature search of chapter

Two dealt with multiple day recognition. The two day test doucmented the fact that both the KNN and

the BPNN fell off significantly. The KNN score fell from 78% to 29% while the BPNN system went

from 76% to 30%. This problem can be overcome to a large extent by training over multiple days.

The effect of training on multiple days is that potential variations due to time can be accounted for in

the training set allowing the classifier to generalize over the differences. Using multiple day training
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the KNN improved to 67% while the BPNN increased to 74%. The BPNN and KNN seemed to be

approximately equal in all tests performed in this section although the neural net classifier seemed to

regain more accuracy when trained over multiple days than did the K-nearest neighbor.

5.3 30 Subject Manually Segmented - Two Day Test

These tests indicated that the decrease in recognition accuracy due to the current automated

segmentation algorithm is very close to 20% regardless of the training set, test set, or classifier type.

It did appear that the neural net classifier substantially outperforms the k-nearest neighbor when using

the manually segmented data. The smallest difference was the KNN score 90% for the SAME DAY

TEST as compared to the BPNN score of 97%. The dropoff in recognition accuracy when training and

testing on different days was still very apparent. The KNN score dropped to 40% while the BPNN fell

to 53%. Both returned to their approximate SAME DAY values when trained over multiple days. In

general, the lose in recognition accuracy is not worth the ability to segment using the current routine.

5.4 Four Subject - Seven Day Test

The recognition accuracy for both the KNN and BPNN systems increased as the number of days

over which the systems were trained was increased. However, due to suspected outliers in some of

the test sets, the recognition score for the later test sets were as good or better than the scores of the

earlier tests sets even though the system had been trained on only one or two days of training images.

For instance, at training day 2 in table 4.2, test set 7 is at 92 percent while test set 2 is still only 58

percent. The same situation occurs in the BPNN table. Notice that test set two generally fell below the

score of later test sets even after the training set from day two had been included. Overall, the neural
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net classifier performed substantially better for this particular series of tests than did the K-nearest

neighbor.

5.5 Accuracy Versus Kfor the K-nearest neighbor

The two tests determined to evaluate this relationship seem to contradict each other. The result

from the Long Term Recognition data for the 23 Subject Test would indicate that K should be as large as

possible. The result from the Four Subject Test indicates that the K-nearest neighbor should be changed

to a simple nearest neighbor for the optimal accuracy. To resolve this contradiction, the feature space

of the system under test must be examined. For the Long Term Recognition Accuracy Test, the system

is trained with the following parameters:

* 23 classes

* 8 KL coefficients

* 4 prototypes for each subject

* 92 training images total

The Four Subject Test is trained with the following parameters:

* 4 classes

* 4 KL coefficients

* 16 prototypes for each subject

* 64 training images total
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These systems represent two very different feature spaces. The first set of parameters constructs

a higher dimension feature space which is then expected to support a more complex set of classes.

However, there are very few prototypes to define the boundaries of these classes. The sparse number

of prototypes assign too much importance to a given prototype which may or may not be an outlier

from another class. The results need to be averaged to arrive at a more correct solution. Recognition

accuracy won't be too good regardless of the value of K.

On the other hand the feature space defined by the second set of parameters is not quite as

voluminous as the previous system; however, it contains only four classes. These classes are populated

with a fairly large number of prototypes as compared to the prior system. This dense population of

prototypes provides fairly good results (>80 percent) no matter what value of K is chosen. But the

accuracy can be increased by reducing the number of prototypes used in the determination because

prototypes on the fringe of a given class do not use prototypes on the fringe of some other class in the

calculation.

5.6 Single Person Verification

Using a training set with a ratio of 60 percent non-target images to 40 percent target images

provides a verification system which is biased toward rejecting a given subject regardless if the subject

is of target or non-target class. The false reject rate of 40 percent is probably higher than the normal

user would tolerate. The false acceptance rate of 2 percent is good depending on the level of security

the system must provide.
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5. 7 Long Term Recognition Accuarcy

Some configurations of the system seemed to improve when tested with the Long Term Accuracy

test set. These systems include both versions of the Different Day Test and the KNN version of the

Multiple Day Test. The systems which showed a decrease in accuracy where the BPNN version of the

Multiple Day and the KNN version of day 7 of the Four Subject Test. The BPNN day 6 and day 7 Four

Subject training sets did extremely well for all images tested on them. The single person verification

configuration was also tested using the Long Term Accuracy test set and was found to provide a 41

percent false reject rate which was consistent with the score from the previous test set.

5.8 Comparison to Other Systems

Table 5.1 and 5.2 compare the performance of systems discussed in Chapter Two to the systems

developed in this thesis for both multiple recognition and single person verification. The WISARD

system provides the best performance of all same day tests; however, the system is expensive, very

complex and requires significant computational resources. In addition the WISARD, as well as the

other systems listed, are tested with test images collected at the same sitting as the training images. It

is logical to think that the accuracy for those systems would significantly decrease for images collected

over time. Finally, with the exception of the WISARD system, none of the recognition systems provides

any method of real-time image collection or automated segmentation (WISARD has no segmentation

but depends on huge number of prototypes).
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#Classes #Sittings # Protos Accuracy

WISARD 16 1 200-400 100%
UCSD 20 1 8 99%
Suarez 55 1 4 95%
Goble 55 1 4 95%
AFRM 50 1 4 73%
KNN System 23 1 4 78%
KNN System 23 2 8 29%
BPNN System 23 1 4 76%
BPNN System 23 2 4 34%
KNN System 4 7 28 90%
BPNN System 4 7 28 100%

Table 5.1. Comparison of all Multiple Recognition Systems Discussed

# Sittings # Protos False Reject False Accept
WISARD 1 200-400 0% 0%
Los Alamos 1 5 8.7% 0.02%
Suarez 1 16 8% 8%
Goble 1 16 2% 3.5%
Current System 6 46 Non-target/30 Target 40% 2%

Table 5.2. Comparison of all Single Person Verification Systems Discussed
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VW. Software Documentation

6.1 Makefile
#### Face Recognition Makefile
#### 2 Nov 92
HOSTzgrinmm
HOME=/data5/krunyon
BIN = $ (HOME) /bin/$S(HOST)
#BIN=./
RASEDIR=/usr/1 . -VFC
VFCLIB...DIR=$ (BASEDIR) /vfc_lib
VFCSY&-DIR=$ (BASEDIR) /sys
GRAB.ROUTINES=z-set-ývfc_hw.o z...grab...gra.o z-store-.image.o
NOTION-ROUTINES=$(GRABROUTINES) zjlnd-diff.o zMjedian.o z_motion.o
SEGROUTINES=$(NOTION..OUTINES) z~outline .o z-seg..regions .0 z~reduce .o
z...segment.o
train :trainxc seg~grab-o S(SEG..ROUTINES) display.o center.o\
gwind.o rescale.o nrutil.o fourn.o klt.o eigsrt.o jacobi.o\
coefficients .o
cc -g -I$(VFCSYS__DIR) -I$(VFCLIB.DIR) -o train trainxc
seg...grab.o \
$ (SEG...ROUTINES) $ (VFCLIB...DIR) /libvfc.a\
display.o\
center.o\
gwind.o\
rescale.o\
nrutil.o\
fourn.o \
klt.o eigsrt.o jacobi.o\
coefficients.o\
-IM
verify :verify.c grab.o seg..grab.o $(SEG..ROUTINES) display.o center.o\
gwind.o rescale.o coefficients.o k_nearest.o nrutil.o fourn.o

cc -g -IS(VFCSYSDIR) -I$(VFCLIB..DIR) -o verify\
verify.c\
grab.o \
seg-grab.o\
$ (SEG-ROUTINES) $ (VFCLIB-.DIR) /libvfc.a\
display.o\
center.o\
gwind.o \
rescale.o\
coefficients.o\
k-nearest.o\
nrutil.o\
fourn.o\
-IM
train..dct train_dct.c seg..grab.o $(SEG.ROUTINES) display.o center.o\
gwind.o rescale.o nrutil.o fourn.o mdct.o
cc -g -I$(VFCSYS_.DIR) -I$(VFCLIB_.DIR) -o train_dct trainl_dct.c\
seg...grab.o \
$ (SEG...ROUTINES) $ (VFCLIB...DIR) /libvfc.a\
display.o\
center.o\
gwind.o\
rescale.o\
nrutil.o\
fourn.o\
.dct.o\
-IM
verify-dct verity..dct.c grab.o seg..grab.o $ (SEG..ROUTINES) display.o\
center.o gwind.o rescale.o mdct.o k~nearest.o nrutil.o fourn.o
cc -g -IS CVFCSYS..DIR) -I$(VFCLIB_-DIR) -o verify..dct\
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verify-dct.c\
grab.o \
seg..grab.a
$ ISEGROUTIINES) $ (VFCLIB_.DIR) /libvfc .a\
display.o\
center.o\
gwind.o\
rescale.o\
mdct.o \
k-nearest.o\
nrutil.o\
faurn.o\
-lm
train_net train~net. c seg-grab. o $ (SEGROUTINES) display. o center.a o
gwind.o rescale.o nrutil.o fourn.o klt.o eigsrt.o jacobi.o\
net_coefficients.o
cc -g -I$(WFCSYS..DIR) -I$(VFCLIB-DIR) -o train-net train_net.c\
seg...grab.o \
$ (SEG-ROUTINES) $ CVFCLIB.-DIR) /libvfc .a\
display.o\
center.o\
gwind.o \
rescale.o\
nrutil.o\
fourn.o \
klt.o eigsrt.o -Jacobi.o\
net_coefficients.o\
-im
verify...net :verify_net.c grab.o seg..grab.o S(SEG_.ROUTINES) display.o center.o\
gwind.o rescale.o net_coefficients.o nrutil.o fourn.o

cc -g -I$(VFCSYS-DIR) -I$(VFCLIB-P.IR) -o verify-net\
verify~net.c\
grab.o \
seg-grab.o\
$ (SEGLROUTINES) $ (VFCLIB...DIR) /libvfc.a\
display.o\
center.o\
gwind.o \
rescale.o\
net~coefficients .0
nrutil.o\
fourn.o\
-lm
retrain retrain.c klt.o coefficients.o nrutil.o fourn.o eigsrt.o jacobi.o
cc -g -o retrain retrain.c klt.o coefficients.o\
nrutil.o fourn.o eigsrt.a jacobi.o -lm

seg-.grab.o :seg-.grab.c $(SEG_ROUTINES)
cc -g -I$(VFCSYS..DIR) -I$(VFCLIIB.DIR) -c seg-.grab.c\
$(CSEG_.ROUTINES) \
$ (WCLIB-DIR) /libvfc.a
center.o center.c
cc -g -c center.c
display.o :display.c
cc -g -c display.c
gwind.o :gwind.c
cc -g -c gwind.c
coefficients.o :coefficients.c
cc -g -c coefficients.c
net..coefficients.o :net_coefficients.c
cc -g -c net..coefficients.c
fourn.o :fourn.c
cc -g -c fourn.c
nrutil.o :nrutil.c
cc -g -c nrutil.c
rescale.o :rescale.c
cc -9 -c rescale.c
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klt.o :klt.c
cc -g -c klt.c
mdct.o :mdct.c
cc -g -c mdct.c
jacobi.o :jacobi.c
cc -g -c jacobi.c
eigsrt.o :eigsrt.c
cc -g -c eigsrt.c
k-nearest.o :k-nearest.c
cc -g -c k..nearest.c
add-usr :ad&..usr.c seg...grab.o $(SEG..ROUTINES) display-o center.o\
gwind.o rescale.o nrutil.o fourn.o klt.o eigsrt.o jacobi.o \
coefficients .o
cc -g -I$(VFCSYSDIR) -I$(VFCLIB-DIR) -o add-usr add-usr.c \
seg...grab.o \

S CSEGROUTINES) $ (VFCLIB..DIR) /libvfc .a\
display.o\
center.o\
gwind.o \
rescale.o\
nrutil.o\
fourn.o\
klt.o eigsrt.o jacobi.o\
coefficients.o\
-lm
#Grab Modules
z_set_vfc_hw.o :z_set_vfc_hw.c
cc -g -IS(VFCSYS..DIR) -I$(WFCLIBDIR) -c z..set..vfc..hw.c
z-grab...gra.o :z...grab...gra.c
cc -g -IS(VFCSYS_.DIR) -I$(VFCLIBjDIR) -c z..grab..gra.c
z..store-image.o :z_store..image.c
cc -g -I$(VFCSYSDIR) -I$(VFCLIB..DIR) -c z..storejamage.c
z_reduce.o :z_reduce.c
cc -g -1$ (VFCSYS..DIR) -1$ (VFCLIB..DIR) -c z..reduce.c
#Motion Nodules
z-find-diff.o :z...find..Aiff.c
cc -g -c -I$(VFCSYS-.DIR) -I$(VFCLIB-DIR) z-finddiff.c
zinedian.o :z-jmedian.c
cc -g -IS(VFCSYS...DIR) -IS(VFCLIB...DIR) -c z...median.c
zjflotiofl.o :zjnotion.c
cc -g -I$(VFCSYSDIR) -I$(VFCLIEjDIR) -c zjnotion.c
#Segmnentation Modules
z~outline.o :z_outlifle.c
cc -g -IS(VFCSYS_.DIR) -IS(VFCLIB..DIR) -c z~outline.c
z..seg..regions.o :z_seg..regions.c
cc -g -1$ (VFCSYS_..IR) -IS (VFCLIBLDIR) -c z-seg..regions.c\
$ (VFCLIB..DIR) /libvfc .a
z..segment.o :z-segment.c
cc -g -IS(VFCSYS-DIR) 1I$(VFCLIB..DIR) -c z..segment.c
grab-one.o :grab_one-c S(GRAB...ROUTINES)
cc -g -I$(VFCSYS.DIR) -I$(VFCLIB..DIR) -c grab-one-c\
$(GRAB...ROUTINES) N
$ (WCLIB-DIR) /libvfc.a

6.2 trainxc

untinxc

M hi pnwgra is used to tran the KL1\KIJN system.
* Te grab routwieIs caldW 11 rt to collect the trainig image. After

&* al Iages of a paticular user have been collected, each of the knage
w r preprcesse (centered and gausia widowed).
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* Te pirprocessed images are then used by kLtransfonn to
*create an average face and a user determuaed number of eigen faces.

7bTe coet~cients module is then called to extract the ki coetlicients
*from the trinning Images. These coeflcients. which are the end resuit
*of the training process are stored in trnin..coefs. All training images
*are stored in a oklder called trainingirnages for possible use in
*retrdainig the system at a later time.

*Writen by:- Ken Runyon

*Date: 21 Jul 92 -31 Aug 92

#include <stdiohb>
finclude <string.h>
hinclude *vfc...1ib.hl
finclude Iglobals.h,

mnt is
finished,
done,
quit,
num..Protos,
userxcoefs,
num-.coefs,numran,
fi e..pf2;

FILE *fparam,
*fiist,
*fweights;

char command 1801.
u..nMM[8J,
nu..name[8,
filename[20I.
waste[21,
anotherl4l;

main()
{

I***.*Make a Training Folder to Hold the Prototypes ******4

system(*mkdir training-images');

/.***.*s*******Open the Training List File ******s*

if ((flisItfopen(I train-list O~w+ "))== NULL)
printf(II can't open the train list.\n"i;

/******.s*****sOpen the Training Parameters File s*******

fparam--fopen(I train..params *,Iw);

Is***.Prompt User for Number ofPrototypes ******30
done - 0;
while (!done)(

pnintf(*\nEnter the number of prototypes to be used for each user <1-20>: )
scanf(I %d ,&numprotos);
ge-ts(waste);
pn~ntf(O \ n 1;
if((num.ptows <20) && (num-protosŽ 2I))
done = 1;
else
printf(*\nYou need to do at least 1 and at most 20.\n');

Enzter User Until You'r Done *******

while (!finished)(
done - 0;
quit - 0;
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I****s k'mpl User for User Name *.****.4

pnntR*\nEnter the person's username <8 letters>: 1);

printf(*\n1);
while(!done){
pnntf('\nThe name you entered was :sWn',u..name);
Printf(*You can either re-enter a name or press return to continue.\nl);
gets(nu..name);
if (nu..name[OJ=- I\O0')
done = 1;

else{(
strcpy(u..namenu.namuue);
nu..name[Ol 0 \O;

/********* gab training images of the user ********

flle..ptr[OJ-fleil(fiis0;
for (1=1; K< num-protos; i++)j

nuwn-vain = anunrain++;
sprintf(fllename,"%s%d",u.xnaeji);
seg-grab(filename);
sprintf(fllenaie,l %s%d%s ".unau=,i .gra");
fprnntf(Nist, %s\n ,fllename);

k Ie I Ikflc(fiist);

I*s***PrepOCess the training images *****4

for (i-1; Knwn~protos; i4.+){
fscanf(flis.'4 Wsn"flenanie);
centet(SMM.IDTH," correlate. ref %fllename);
gwind(SM-WIDTHIilename);
cenWe(SM..WIDT, *wind. ref ,filename);
spnni(fllenamie.,%s%d",ujwnemei)
display(SM-.WIDTH,filename~nun-protos);
spnntf(lfllename,%s%d%sl,ujname,i, .gral);

Printf(*\nDo Another User? <y or n>: 9;
gets(anothe);
while (!quit)(
if((fanother[Oj-ý In,)11(another[Ol= 'N)){

finished = 1;
quit-I ;

else if ((anotherfOJ = 'y,) 11 (anotherfOJ = y,)
finished - 0;
quit-I1;

else
0;pnintf("\n\nHit y if you want to enter another user.\n~it n if you're done entering users.

gewsanodwe);
prinf( \n);

Decide how many eigenaces you need .****

done -0;
while (!done)(
printf(\nEnter the number eigenfaces you want to train on <%d>:

on -m-an-euan-Protos/m;
sconf("Wd,&uet.moef);
gets(waste);
printf( \);
if ((user..cef > 0) && (userixoefs < numarina)){
nuaucoefs = user..cofs;
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done = 1;

else if (uscr.coefs -= 13Aj
numxmofs - nwnmtrainnm-lxotoO;
done - 1;

else
Printf("\nYou need to do at least 1 and at most %dn',num-rain);

fprintf(fparam. %d\ntd\ntd\ntd\n .SM..WIDTHmnurn.ocfsmnwnarain. nwum.Protos);

Mcose(fparam);

kLianform(Itrain-list,.SM-YIDTH, unwnrain);

I*********.Make Coefficients for All Training Images *********4

if(Qilist =fopen(ltrain-list,. lr))= NULL)
pnintf(,\nCollect can't open the training list.\n*);

fweights =fop n(Itrain..coefs*,wl);

for (i-1; i<num-train; i++){
fscanf(flit,,%s\n,.filename);
sprintf(cotnmand,1%ststs * ,mv 1,filename, training-images');
coefficients(SM-WIDTH, num-coefs, filename, tweights);
system(command);

sysetn(Im *.rlel);
system(rm *.rec');

printf(*\nTRAINING IS COMPLETEWn);
) /*BND TRAMN

6.3 train..neLc

* trin-net~c

* This program is used to train a sysem based on KLT feature
*extraction and a neural net classifier. The grab routine is first
*called to collect the training images. After all mimges of a
*Particular user have been collected, each of the images are
* wprercse (centered and gaussian windowed).

b Te preprocessed images ame then used by kLtransforn to
*create- an averag face and a user detennmed number of eigen faces.
* Te coefficients module is then called to extact the Ui coefficients
*from the training images. Thes coefficients am stored in a data
*file called UlLMa to be used by the neural network Ovnwsalsorlthm.

7 he aneuralneor algorithm cretes a weight file which~lilwDbe use
*in the rcgionPhase. The outputs of this code am 1) the kULdM

M ie, 2)tesetu~p file for the network, and 3) the weight file created
*by the network. All training images
*am stored in a folder called train agSimages for possible use in
* rtraiining the system at a later date.

*Written by: Ken Runyon

*Date: 25 Sep 92

#include <stdio.h>
#include <String h>
#include Ivfcji11b.hl
#finclude *globals.h"
#dcfine NUM±LAYRS 2
#define WT.SED 1918940490



#define PARTSED 1191645590
#define RNDM.SED 123456789
#define MAXIT 500
#define OUTINT 100
#define ETAIN 0.15
#define ETA-.OUT 0.3
#define ETA1 -2 0.0
#definc ALPHA 0.5
#define BATSZ I
#define TRAINJ.CT 1.0
*define NORM I

mnt i.
finished,
dow,
quit,
month

num-protos,
user..coefs,
nwuncoefs,
nwua-rain;

file..jnrf21;

FILE *fparamn,
*flist,
*fWeights,
*fset,
*fgable;

char wtfile[101,
daLfile[I0J,
command(80J,
imageloWdr20J.
u-name(8J.
nu..nanx181,
filename[201,
waste(21,
anothedt41,
nwnmcxas,
hidnodes,
hid..nodes2;

mamno

I
I****Make a Training Folder to Hold the Prototypes ******4

system(Imkidir training-images);,

I****.*********Open the Training List File ********

if ((flist=fopcn(" train~list ,*w+))a=NULL)
printf(II can't open the train list.\nl);

I*************Open the Training Parameter File ********

fpwara-fopen("train...paramsl,lw);

I**s******* PromptUser forumbe~roftnoiypes ******4
done a 0-
while (!done){

printf(*\nEnter the number of prototypes to be used for each user <1-20>: )
scanf(" td"&num-protos);
gets(waste);
pnntf(\n');
if ((num..protos < 20) && (num.protos 2!1))
done= 1;
else
printf(\nYou need to do at least 1 and at most 20.\nli;

Enter Users Until You're Donew **n**.
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while (!finished){
done - 0;
quit - 0,

/**.**Purompt Userfor User Name **.****d

pnintf(-\nEnter the person's username <8 letters>: 1);
gewsu..namne);
pnntf(1\n1);
while(!done){

printf(,\nThe name you entered was :%s\n1,u.nalne);
printf(,You can either re-eater a name or press return to continue\n');
petsnuname);
if (nu,.nmef0)l0 1\)
done- I;

else{(
stscpy(u..nanm,nu-name);
nu..name(OJ0 \O;

linwncias++;

I*********grab training images of the user

file4,IrOJWfte(fiist);
for (i-1; K< nunmprotoe; i++){

numjvaiF= nwnjrain++;
spritf(filenamel %std",u..nme.i);
seg..gabxllename);
sprintf(filename," %s%d%s *uamaLei -. gra-);
fprintf(fiist., %s\n~filenamn);

I*****Pkeptocess the taxining image *****'4

for (M=; i~nun~protos; i.+){
fscanf(fiFist, 0 s \n filename);
center(SM..WIDTH, Icorrelate. ref %filenune);

gwind(SMM.IDTH,filename);

centei(SM..WIDT, 'wind. ref ",filename);
sprnnzf(Ailcname," tstd,u-name~i);
display(SM-WEDTH,filenuamnunLprotos);
spnintf(filename,%s%d%s",u-nameJi,-.gra-);

printf(,\nDo Another User? <y or n>: \n*);
gets(another);
while (!quit)(
if ((anothed01- I')n11I(anotherfO -= IN)){

finisbed = 1;
quit =i;

else if ((anoftheOj - 'y') 11(another[O1 - 'Y')){
finished - 0;
quit-I1;

else{
prlnf(*\n\nHit y if you want to enter another user.\nHit n if you're done entering users.

getsanother);

Deckle how nmay eigenfaces you need *s**s
done -(0
while (!done)(
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prinf(*\nEnter the number eigenfaces you want to train on <td>: *,num-bain/;
scanf(* %d1,&userxoefs);
gets(waste);
prantf(*\nl);
if ((userxcoefs > 0) && (userx.oefs < um-train)){
numwn.ofs = usercoefs;
done = 1;

else if (userx.oefs - I3)
nwn..coefs - numjtraint3;
done-=I;

else
prnnhf(nYou need to do at least 1 and at most %dMn~mnumrain);

I********.Create the traia.params file for the recogniton phase ********'d

prntf. _paranid\ntd\ntd\n%d\ntd\nSM..WEDTH~num..oefstnum~frain, num..protos, nwn-tlass);

fclose~fpsaram);

I***.*****Create the setup file for the neural netwont *********4

strcpy(wLfiie,"kit .wts1);
strcpy(da"fie. kit. dat1);
hid-nodes = 2 * num..coefs;
hid..nodes2 = 0;
fset w fopen(Isetup. ap% w');

Me, %d\n%d\n%d\n%d\n%s -store weights \ntd\n .NUM.LAYRS,Wr-SED.PA~rSEDRNDMSED,wLfile.
MAXITS);

#nifffset,1%d %d %d %d\nlmwnmixofs~hid.nodesjhk-nodes2,num..clus);

dalI1COUT-JNT.ETAJIN,ETA.OUT.ETA.1-2.ALP)HA.AT.SZ4TRA1N..PCT.NORM);
fcose(fset);

i**********Calculate the basis set *********

kljmnsform"train..list", SM..WIDTH, numarain);

/****** Create the lookup table for the neural network *****4

ftablemfopen(I lookuplwa1;

/*********.Create the data fie for the newurl net work******

if ((flist =fopen(Itrainjlist , 1r0)) - NULL)
printf(l\nCollect can't open the training list.\nl);

fweights, fopen('klt. dat","w);

fprintf(fweights, %d\ntd\nl,numx.oefs,unuxm..ls);

for (imI; iKnum-train; i++){
fscanf(flist, %s\n",filename);
sPrintf(command,*%s%s%s",mv %,filename,I training-images-);
neLcoefficients(SM.YIIDTH, num..coefs, filename, fweights, ftable, nwn..cass);
systemi(commnand);

fcoefweights);
aytmr *.rle*);

systen(Irm *.rec*);
syseI~rm *.red');
system('mip..trne);
printf(' \nThAifiNG IS CONPLETEWni;

1 *END 7XAIN'4
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6.4 train-dct.c

Straincdac

MTi program is used to train t•e system. 7Tbe gab routine is irst
called to collect te training images. After anl knages of a
particular user have been collected, each of the images am

• preprocessed (centered and gaussian windowed).
• Tbe prepame Sedimagesam then used by mdctLc to extract the fti
• 64 Infmte Mnages.
• These coellicients, whch are teend resuk
• of the training process am stored in train coefs. Al training images
Sare stored in a folder called training-images forpossible use in

• retraining the system at a laer date.

M Written by: Ken Runyon

* Date: 22Sep"92

#include <sdio.h>
Ainclude <string.h>
Ainclude "vfc-lib.h"
#include globals.h"

mt i,
finished,
done,
quit,
month,

num-protos,
user.coefs,
nmn.coefs=7,
numrtrain,
file..pr[2];

FILE *fparam,
*flist,
*fweigbts;

char command[801,
image.folder[20],
u-name[ts,
nu-ameel8,
filename[201,
wute[2L
another[4];

maino
{

.s******** Make a Training Folder to Hold the Prototypes ******4

systemi("mkdir training-images');

Is*************** Open the Training List File ***************

if ((flist=fopen(" train-list ,lw+1))m= NULL)
prnf(I can't open the train list.\nl);

/**************** Open the TraIning Parameters Fie***************

fparamnfopen("train_.params,'w');

I********* Prompt User for Number of Prototypes ******4
doe -
while (!done){

pintf('\nEnter the number of prototypes to be used for each user <1-20>: ";
scanf(" %d ,&anum-protos);
gts(waste);
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if (nium2pros< 20) &&(nwn-protos 2 1))
done-= 1;
else
printft,\nYou need to do at least 1 and at most 20.\n);

)* ************Enter Users Until Youmr Donew **s***,

while (!finished){
done - 0;
quit = 0;

I'****Prompt User for User Name ***.***4

pfintf(,\nEnter the person's username <8 letters>: )
gets(u..nane);
prnnt(*\n*);
while(!done)f

pI nf\nThe name you entered was : ts\nlu..nmzn);
prlntfRYou can either re-enter a name or press return to continue.\n);
Wesnunant);

if (nu-name[O -= I\O0')
done- 1;

else (
strcpy(uiim=.nu-name);
nu..namejOJ=0 'O;

I*.******.*** grab training images of the User

file..ptfOJ=ftell(flist);
for (i=1; K~ num.protos; i++){
numain - numjrain++;
sprntaflnam, %std",u-name~i);
seg-grab(fileoame);
sprintf~fllenazne %s%d%s ,u.wnaei,i. .gra*);
fprntf~flist, * s\n~filenaane);

lie~pr 1J-ftell(flist),

I*** *Preprocess the tamining images ***.*a4

for (i-I; i:5num.protos; i++){
fscanf(flist.8sWn"filename);
centei(SM-WIDTH, *correlate. ref ,filename);

/* sPdndTf(knane"%s%d",u..nameXi;
display(SM-WID71Lflenamernum-pfutos);

gwind(SM.Y/IDTH,filenazne);
A* sprintf(lilename,"%s~d",u-nname,i)
display(SM..W1DT,fi~ename,nunI~prost);
spnntf(fileaxne.%s%d%s",u..naie4i".gra")$

conter(SM..WITH,'wind. ref 1.filename);
Zsprintf:fienamne,,%s%d",ujnm=,i);dlplay(SM..WiDTH,fllename~nunmprtos);
spn(fNLeniazne,%stdts',uwnae,%I,.gral);

printf(*\nDo Another User? <y or n>: \n*);
gets(anothe);
while (!quit)f
if f(amochesfOl- I'n)I11(anolherfOJ- 'NI){f

finished-= 1;
quit - 1;

else if ((anothe4Oj=- yl) 11(anotherO1t- 'Y')){
finished m -
quit -I
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else I
prnnlf(*\n\nHit y if you want to enter another user.\nHit n if you're done entering users.

gets(another);
printf(,\n*);

fpdntgfofaraM,%d\ntd\n%d\ntd\n,,SMLWIIDTH,num..eoefs,numnrain, nwn..protos);

fclose(fparam);

I**********Make Coeffcients forAli Training Images ******s***

if (Mist -fopen~train-list', Irl))-NULL)
prnnif('\nCollect can't open the training list.\n*);

fweights =fopcn( train-coefs*,Iw);

for (i=l; i<numjrain; i++){
fscanF~fist,O%s\n*,filenazne);
sPrintf(comnaknd,*%s%s%s",mv ,filename, * training.Jimages');
dc-transform(SM..WJDTH. filename, fweights num-coefs);
systemn(command);

fclose(fweights);,
systeh(*rm *.rle");
system(Irm *.recm);
system(*rm *.red);,
printf(*\nTRAINING IS COMPLETEWnl;
) I*END TRAIN4

6.5 trainxc

*This program is used to train the KL7\KNN system.
*The grab routine is called first to collect the trdainng images. After
*all images of a panicular user have been collected, each of the images
*am preprocessed (centered and gaussian windowed).
*The preprocessed images am then used by kLtransfonn to
*create an average face and a user determined number of eie faces.
*The coefficients module is then called to extact the k)ceU ikt
*frmn the training images. These coefficients, which am the end resukt
*of the tranin process are stored in train..coefs. All trining imaes
*am stored in a folder called trainingjmiages for possible use in
* rtrining the system at a later time.

*Written by: Ken Runyon

*Date: 21 Jul 92 -.31 Aug 92

#include <stdio.h>
#include <striag.h>
#linclude vfc-lib.h"
#include 'globals.h*

int i,
finished,
done,
quit,
num-prtos,
userxcofs,
Onumxoefs,
nwlmlrainv
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file..ptrf 21;

FIIE *pamn,
*flist,
*fwcights;

char comniand[80J.
u..name[8,
nu-tazniel

waste[2J,
another!41;

I*****Make a TRaining Folder to Hold the Prototypes ******4

systemi(Ikdir training..jnages');

/**s*.*s****s**Open the Training List File-********

if (Qflist=fopen(* train-.list I~w+ *))== NULL)
printf(II can't open the train list\n'l;

I*************Open the Training Parameters Fie******s**

fparain=fOpen(* train.Jarains *,wl);

I*****Promnpt User for Numiber of Prototypes ******4
done = 0;
while (!done){f
pnintf(*\nEnter the number of prototypes to be used for each user <1-20>: )
scanf(I %d,*&nun~protos);
gets(waste);
printf( \);
if((nuln-peoW <5 20) && (num-protos 1)
done - 1;

ellse
printf(,\nYou need to do at least 1 and at most 20.\nl);

Enter Users Until You're Done ****s**

while (!finished)[
done W 0;
quit = 0;

I*****Prompt User for User Name .******d

printfC~nEnter the person's username <8 letters>: 1);
gets(u-name);
printf( \);
while(!done){

pnntf(*\nThe name you entered was :sWn'u..name);
printf("You can either re-enter a name or press return to continue. \n");
pets(nu-namie);
if (nu..namelOl-ý I\ 0)
done-=I;

else I
stwpy(u..name.nu-name);
nu..namne(J '0 1;

I*********grab training images ofthe user*s******

file.pt4OJ=fteHfl~fis*)
for (i-I1; iK RUnIM14rOw; i44)f
nuinurain = nonLlrn++;
sprintf~fllenamne,* %s%d",u..name,i);
aeg..grb(filenaMW);
SO itf(filename, %stdts ,uu.nmewi, .gra-);
fprnt. lt W& sOn",fillenaine);
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Preprcess he a*** ng ***es*****

for (im 1; i< nummproto; i++){
fscanf~fl~ist, as\ n ,fliename);
center(SM-WJDTH, Icorrelate. ref ,.filenamie);
gwind(SM.WJDTH,filenamne);
center(SM -AWIDTwi nd. re f l.filename);
sprintf(filename, I% s%d 1u-namnej);
dfisplay(SM..WIDTH,filename~nun-proos);
sprnnhl(fllenaine,%s %d% s ,uuania, . .gra)

pnintf(*\nDo Another User? <y or n>: )
gets(another);
while (!quit)(
if ((another[Ol=- In')11(anotherfOl = 'NI)){

finished = 1;
quit-= 1;

elseif ((another[Oj=- ly )I11(anotherlOl= 'Y ))
finished = 0;
quit-=i;

else{
printf(*\n\nHit y if you want to enter another user.\nHit n if you're done entering users.

gets(another);
printf("\n,);

Bftide how nmay elgenfaces you need *****

done = 0;
while (!done){
prnnhf(*\nEnter the number eigenfaces you want to train on <%d>: *

nwnum..rin/mm..protos/3);
scanf(* Wd,&userxoefs);
"gt(waste);
printf(*\nl);
if ((userx.ocfs > 0) && (user..oefs < num-trainD{
num..coefs = user..oefs;
done = 1;
I
else if (uscr..coefs - IM)
num..coefs - numirain/Win-proto.s3
done = 1;

else
printf(*\nYou need to do at least 1 and at most %d\n*,numirain);

fprintf(fparam. %d\n%d\n%d\n%d\n",SM..WIDT,numxcofs,numramin, nunLprotos);

fclose(fparmn);

kijransfonn(Itrain..list", SM..WEDTH. onwnarain);

I**.**.**.*Make Coefficients forAll Training inages *****

if((fist = fopen(Itrain-list*, *r*)= NULL)
printf(,\nCollect can't open the training list.\nO);

fwcights =fopen(Itrain...coefsl,*w1;

for (im1; iKnumurain; i++){
fscanf~fms, Wsn~filename);
sprintI~cotnmand,*%s%s%s"*,"mv *,filename, Itraining~jinages');
coefficients(SM.Y/JTH, numxcoefs, filename, fweights);
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system(command);

tIclosflist);
fclose(fweights);
system(rm *.rlel);
system(rm *.rec");
system(rm *.red*);
printf(\nTRAINING IS COMPLETE\ni);

} i*ND TRAINd

6.6 retrain.c

Sreamin.c

* This program trains a face recognition system using the pr-existing
• images stored in the directory of execution.•No grabs, no propcessinhi ust
Smakes eigenrs and coef cients. Trainig paramaters are selected

• by the userprompts. It has to be provided a train list. This program
* is used when you want to keep the same training set but change some
Straining parameter such as number of coefficients.

,

* Wdtten by: Ken Runyon
,

* Printed: 1OSep92

* Date: 18Aug92

ffinclude <stdio.h>
#include <string.h>

int L
done,
width=32,
usercoefs,
nwn~coefs,
num-train;

FRLE *fparam
*flist,
*fweights;

char commaad[80],
filename[20J,
waste[21;

extem kLranmformO;
extra void coefficientso;

mainO{

I****s*****uu******* Open the Training List File *************4

if ((flist=fopen( train-list a,"a))== NULL) I
printf('I can't open the train list.\ni);
exit(- 1);}

/*************s** Open the Training Parameters File ***************4

if((fparam - fopen(Q trainsparams .," r"))- NULL){
print(IeI can t open the parameter file. ");
exit(- 1);

Open the trainlist *********.*****4

if((flist - fopen("train_.ist *," rl))- NULL){
printf(I can't open the training list.,);
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exit(- 1);

/******s***Count the number of training images **s****4

while (!feof(fiist)){
fscanf(fiist., %s\n,,filcname);
num~train++;

prinf(*\riRetraining on %d faces: \n',nwntrain);

fclose(fiist);

I**********Decide bow many eigenfaces you need ****s*

while (!done)f
printf("\nEnter the number eigenfaces you want to train on <%d>: ",num~irain/3);
scanf(' %d"&user~coefs);
gets(waste);
printf(*\nl);
if ((user..cofs > 0) && (user..coefs < nwnirain))f
numxoefs - user coefs;
done = 1;

else if (usercoefs = IM)
num..coefs = numiraina3
done = 1;

els
printf(,You need to do at least 1 and at most %d\nl,num-train);

fprintf(fparamI %d\ntd\ntd\n ,widdihnumxcoefs~num-train);
fclose(fparazn);
systeni(cp training..xmages/* *)

/*kitransformn"train list", width, num-Lrain); 4

I***********Make Coefficients for Al Training Images *********4

if (Mfist=- fopen(Itrain..list*, Ir1))= NULL) I
printf("I can't open the training list.\n*);
exit(- 1);

system(Irm train_coefs*);
fweiglits= fopen(*train..coefs*, 'w);
for (i=l; iKnum-train; i++){

fscanMFLast,"%s\n*,filename);
sprintffcomnmand,*%s%s%sI,,mv ,Illename, "training..images *);
coefllcients(widtli, nuiu~coefs, filename, fweights);
system(command);

Iclose(flist);
) A*END 7RALN4

6.7 add-usrnc

7bTis program is used to add a user to the set of trainin faces.
*Imuage of the new user are taken and preprocessed. TheQ new images
*amcade to the train-iist. A new average face and a new set of eigen-
*faces amc then created using the new images and the pre-existing umages
*stored in the trainingimages folder
*Coefficients are then extracted for &H of the images and a new
*train-coefs file is written.

*Written by: Ken Runyon
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• Date: 21 Jul92 - 25 Aug 92

#include <stdio.h>
#include <string.h>

int i,
finished,
done = 1,
quit = 0,
month,
day,
width,
num-protos,
user-coefs,
num.coefs,
numirain,
file-ptr12l;

FILE *fparam,
*flist,
*fweights;

char command(801,
u-name[81,
nu-name[8J,
filename[201,
waste[21,
another[4];

extem void seg-grabO;
extem void displayo;
extem void centerO;
extern void gwindO;
extem void coefficientso;

main()
I
I**************** Open the Training List File ***************•

if ((flistffopen(train-list ",a'))== NULL) {
printf(I can't open the train list.\n");
exit(- I);}

/**************** Open the Training Parameters File ***************

if((fparam = fopen(I trainparams "," r*)) = NULL){
printf(I can't open the parameter file. );
exit(- 1);

Iscanf(fparam, • %d ,&width);
fscanf(fparam," %d',&num.coefs);
fscanf(fparam," %d',&num-train);
fscanf(fparam," %d ,&num~protos);
fclose(fparam);

I****************** Enter Users Until You're Done ***********

while (!finished){
done = 0;
quit = 0;

i'******** Prompt User for User Name ******4

pnntf('Enter the person's username <8 letters>: 1);
gets(u.name);
printf(" \ n");
while(done == 0)=

printf("The name you entered was : %s\n',u.name);
printf('Ycu can either re-enter a name or press return to continue.\n);
gets(nu.name);
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if (nu..name[OJ = \0
done = 1;

else f
strcpy(uilame,nu..name);
nu-name[OI= '0

/.*********grab training images of the user ********

file-ptrtOJ1ftell(flist).
for Oi=1; i< num-protos; i++){
num~irain-= num..irain++;
sprintf~filenamie. %s%d" ,uitamie~i);
seg-grab(filename);
spuintf(filename, I%s%d%s ,u.naznw,i*.~ .gra*);
f'prinif(fiis. %sWni ,filenanie);

fseekf(flist,(file..ptrIOl-file..ptr~ll ),l);

s* * *** ** ** Preprocess the training images ***4

for 0i=1; iKnum-protos; i++){
fscanf(flist, *% s \ n "ilenanie);
center(w idth, "co rr e 1a te. r e f , flename);

gwind(width,filenami);

center(width, Iwind. ref ",filename);
s pri nt ftilename, *% s% d ,u..name, i):

spA'ntf~lename, I%std%s ",u'namej, .gra );

fleek(fiist,(file..ptr[ II- file..ptrtO]), 1);
printf('\nDo Another User? <y or n>: \n*);
gets(another);
while (quit = 0
if ((anotherjOJ = n) I) (anothertO) == N' )){

finished= 1;
quit = 1;

else if ((anotherfOl 'y') 11 (anotherfOJ Y=
finished = 0;
quit = 1;

else{
printf(,\n\nHit y if you want to enter another user.\nHit n if you~re done entering users.

gets(another);
printf(I\ n 1)

)close(flist);
/******s***Decide how many eigenfaces you need s*****

while (done == I){
printf("Enter the number eigenfaces you want to train on <%d>: l,num-trainl3);
scanf(" %d "&user-.coef's);
gets(waste);
printf(I \n'),.
if ((usercoefs > 0) && (user-coefs < num-arain)){
num.xoefs = user..roefs;
done = 0;

else if (userxoefs == IM)
num-coefs = num-trainl3;,
done = 0;

else
prinlf( You need to do at least 1 and at most %d\n'.num-train);,
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I
if((fparam = fopen( trainparams ",w ))= NULL){

printf(II canIt open the parameter file.");
exit(- 0):I

fprintf(fparam,* %d\ n%d\n%d\ n%d\ n" ,width,num.coefs,num-irain.num-protos);
fclose(fparam);
system("cp training-images/*.gra
kltransform(•train_list", width, num-train);

/************* Make Coefficients for All Training Images *********4

if ((ist = fopen("train.list", •r")) = NULL) {
printf(I can't open the training list.\n*);
exit(- 1);I

fweights = fopen( train coefs%"w");

for (i=l; i<num-train; i++){
fscanf(ffist," %s\n".1ilename):
sprintf(command,1%s%s%s1.,mv "filenamc, training-images'):
coefficients(width, num-coefs, filename, fweights);
system(command);

lclose(flist);

fclose(fweights);
system(Irm *.rle');
system(rm *.red");
system("rm *.rec*);
) ,END TRAINM

6.8 verify.c

*************** ** *** **** *** ******************s*********
N Name: verify.c

• Description: This program performs face recognition. The program
• grabs an image of the person sitting in front of the
• camera, processes that image, extracts the KLT
• coefficients and finds the closest
• match from the faces in the training set using the
• K-nearest neighbor.

* Written by: Kenneth Runyon

* Date: 8 July 92-31 Aug 92

#include <stdio.h>

int dimension,
num.coefs,
numirainfaces,
done,
num.protos;

FILE •fparam,
*fweights;

char answer(2j,waste[21;

main()I

I****** Grab a test image to align the user *****4
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while(!done){
grab(64);
systern(*bin2gray user.red test .gra");
system(" rm user. red");
display(64, "test I, I);
printf("Is your face comnpletely in the picture? <y or n> :)
while(((answer[OJ$ 'y ) && (answer[OJ$ Y' )) &ý&((answer[OJ$'n') &&

(answerl[j# 'N ))){
gets(answer);
printf( \ n *);
if (answer[OJ= 'y, answerlOl= 'Y

done = 1;

else iftanswerfOj =- n ~I answer[Ol = IN' )
Printf( "answer = %c \ n answer[O]);
done =0;

else
pnntf

("Enter -y. if your whole face is in the picture.\n');
printf

("Enter n'n if your whole face is not in the picture.\n\n");

answer[Ol = 0;

system("rm test .gral);

*read the paramneters from trailL-params file

if((fparam = fopen(" train-params"," r")= NULL){
Printf("I canIt open the parameter file.")
exit(- 1);

Iscanf~param, , %d %&dimension);
fscanf~fparam, * %d*,&num..coefs);
fscanf(fjaram," %d ,num-train..faces);
fscanf~fparam, I %d ",&knum..protos);
fclose(fparam);

I****** grab a test image *****4
seg..grab(* user");

I****** preprocess the test image *****ad

center(dimiension," correlate. ref ,user. .gra"1);
gwind(dimension," user. gral);
center(dimension, *wind. ref",%'user. gra");
display(dimension, "user ".1);

I****** pull the ki coefficients and store them *****4

fWeights = fopen(Itest-coefs","w");
coefficients(dimension, num-coefs, Iuser . gra ",fweights);
fclose(fweights);

I****** find the best matching training face *****'d

k..nearesl(num-protos~num-coefs,num-arain-faces);
syst'.m('rm test-coefs*);

I****** remove trash files ******4

syslem("rr *.rle");
system('rrn *.red');
system(Irr *.rec").

) **end verify.c .*d
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6.9 verify-net.c

I***** ****************************************************
• Name: vernfy-net.c

• Description: This program performs face recognition. The program
• grabs an image of the person sitting in front of the
• camera, processes that image, extracts the KLT
• coefficients and finds the closest
• match from the faces in the training set.

M Written by: Kenneth Runyon

• Date: 8July 92-31 Aug 92

#include <stdio.h>
#define NUMLAYRS 2
#define WTSED 1918940490
#define PART.SED 1191645590
#define RNDM.SED 123456789
#define MAXJTS 3000
#define OUTJNT 100
#define ETAJN 0.15
#define ETA-OUT 0.3
#define ETA_! -2 0.0
#define ALPHA 0.5
#define BAT.SZ I
#define TRAIN.PCT 1.0
#define NORM I

int dimension,
num.coefs,
num.irain-faces,
done,
num-class,
num.protos;

FILE *fparam,
*fweights,
*fset,
*ftable;

char wt-file[ 101,
dat-file[10],
hid-nodes,
hid.nodes2,
answer[2l,
waste[2];

extem void grabo;
extern void ver.grabO;
extern void displayo;
extem void centerO;
extent void gwindO;
extern void net.coefficientsO;
extern void k.nearestO;

main()

1****** Grab a test image to align the user *****4

while(!done) {
grab(64);
system(" bin2gray user .red test.gra");
system(• rm user. red');
display(64, "test",i);
printf(fIs your face corletely in the picture? <y or n> :');
while(((answerf01$ 'y' ) && (answerf01 ' Y )) && ((answerl0]$ ' n' ) &&

(answerd0jq'N'))){
gets(answer);
printf("\n*);
if (answerI01= 'y' I answerfO0 - 'Y'){
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done = 1;

else if(answer[Ol == In II answerfO] == 'Nj
printf~answer = %c\n~answer[OI);
done = 0;

else 1 it

('Enter ly, if your whole face is in the picture.\n");
printf

("Enter In if your whole face is not in the picture.\n\n");

answerlOj = 0;

system("rm test .gra*);

*read the parameters from train..params file

if((fparamn = fopen(" train~params " r " )=NULL)
printf("i can't open the parameter file. I)-.
exit(- 0-,

/s~canf(f aram, * %".,&imension);
fscanf(Pparam, I %d ,&num-coefs);
fscanf(fparam,*"%d",&num-irain..faces);
fscaniffjparam, I%d:,&num..protos);
fscanf~fparamn," %d I,&num..class);
fcose~fparam);
I** * ***** * *** Create the setup file for the neural network ****s4

strcpy(wt-file, " kit. .wt s");
strcpy(dat-file, ,"kit .dat ');
hid-.nodes = 2 * num..coefs;
bid..nodes2 = 0;
fset = fopen(I setup. mlp", "w)I
fpn~ntf
(tset, I%d\n%d\n%d\n%d\ n%s -store weights \n%d\n " .NUMi-AYRS,WT-SED,PART.SED,RNDM-SED~wtfile,
MAXJTS);
fprintf(f~set," %d %d %d %d\n ",num-coefs,hid..nodes,hid-nodes2.num..class);
fpnintf~fset," %s -data\n%d\n%f\n%f\n%f\ntf\n%d\n%f\n%d\n'I
datzfile,OUTJNT,ETAJNETA.OUT,ErA-1-2,ALPHA,BATSZ,TRAIN..PCT,NORM);
fclose(fset);

/***** ma test image *****4

I****** preprocess the test image *****'V

centerdininsion,,"corre late. ref ","user. gra*);
gwind(dininsion~l user. gra*);
center(dimension,'wind. ref ","user. gra");
display(dimension, "user ",);

I****** create the data file and store the kI coefficients *****4

ftable=foPen( "waste, 'w');
(weights = fopen( klt. .dat',*w*);
(printf(fweights,* %d\ n%d\ n*,nuntcoef~s,num..class);
net-coefficients(dimension, num-coefs, " user .gra", (weights, (table, num..class);
fcoseffweights);

I****** find the best matching training face *****ad

system(" mlp..t st *);

I****** remove trash files *s*****d

I*Ssystm("nn test-coefs");'V
system(Irm *.rlel);
system(rm *.red');
:ystem("rm *.rec*);
sy~temn(Irm waste");

}I*end verifyc **4
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6.10 verify-dctc

* Name: verifydct.c

* Description: This program performs face recognition. The program
* grabs an image of the person sitting in front of the
, camera, processes that image, extracts the DCT
* coefficients and finds the closest
* match from the faces in the training set.

* Witen by: Kenneth Runyon

, Date: Sep 92

, To be done: If(pers is user) then login else logout

#include <stdio.h>
#define SQ(A) (A)*(A)

int dimension,
coef-rows,
num.coefs,
numirain-faces,
done,
num.protos;

FILE *fparam,
*fweights;

char answer[2],waste[2];

extem void new.grabo;
extern void displayo(;
extern void centero;
extern void gwindO;
extern void dc-transformO;
extern void voteo;

main(){

I****** Grab an image to align the user *****4

while(!done) {
grab(64);
system('bin2gray user.red test.gra");
system( rm user. red');
display(64, •test",1);
printf(*Is your face completely in the picture? <y or n> :);
while(((answerfO]4' y' ) && (answerlO]$ ' Y' )) && ((answer[0]$' n') &&

(answerj0l$ IN' ))){
gets(answer).
printf(" \ n);
if(answer[OJ== 'y' II answer[lOl 'Y'){

done = i;

else if(answer0] ' n' 11 answer[O]J 'N9)
printf(lanswer = %c\n*,answer[0]);
done = 0;}

else{
printf("Enter 'y' if your whole face is in the picture.\n');
printf('Enter 'n' if your whole face is not in the picture.\n\n");

} I, end of else4
} I, end of while (answer) d

answer[01 = 0;
} I, end of while(doneY
system("rm test.gra•);
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m rad the parameters from train..parains file

if((fparamn = fopen( train~params*," r*)) = NULL){
printf(I Ican It open the parameter file.;
exit(- 1);

1.scanf(fparain,'"A%",dimension);
?Dcnffarm ! %d ,&coef..rows);

num.fc~ofefas = Q(coef..rows+l);
fscanf(fparam," %d" ,&num-train..aces);
fscanf(fparam, I %d"Anum..protos);
fcloseffparam);

I****** Grab the !est image *****4

ver..grabo:.

I****** Preprocess the test image *****4

center(dimension," correlate. ref" %*user. gra );
gwind(dimiension," user .gra");
center(dimension, "wind. re f ", *user. gra 1);
display(dimension, "user ",I);

I****** Write out the DCT coefficients *****4

fWeights = fopen(" test-coefs ""w'i;
dc~iransformn(dimension,* user . gra ,fWeights,coef..rows);
fcloseffWeights);

/****** Find the closest matching training face *****4

k-nearest(num-protos,num..coefs,num-trcin-faces);

s*s***s Remove the trash files *****4

system(" rm testcoe fs");
systemn(Irm * .rle*)*;
system("rm *.red');
system("rm *.rec*);
}Iss* end verify..dct.c **4

6.11 kILtc

NAME: kltic

DATE: 24 June 1991

DESCRIPTION: This program calculates the basis set of eigen faces for
a given training set as well as the average face.

Modified by: Ken Runyon

Printed: 10 Sep 92

Date: 30 Jul 92

Changes: Modularized the program to a procedure. Modified the
interface to pass training parameters.

#include <stdio.h>
#include 'math.h>
#include <strnng.h>

#deline SQ(A) (A*A)

char train-lisili;
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int dimension,
num-1rain;

void kl-transfonn(train..list, dimension, num-train)
I
FILE wtain, *facein, *fout;
FILE *face..avg, *tempfile, *fevex, *feval;
int ij, N, k, M, nrot, atoio;
float s*mratrixo, *vectoro, **A, **Aitrans, **u, **L, **v, *averageiace;
float *d, temp, *mag;
void free-vectoro, freejnatrixo, eigsrtO), jacobiO, mat-col..mago;
char filenamc[81 ], hI;

I***************Set Up Files ************

prntf("Creating Eigenfaces.\nn)N= dimension * dimension;
if ((rain = fopen(train.Jist, "r ))=NULL)
I.
pnintf(*i can't open the training list*);
exit(- I);

M =num..zrain;

I* * *** dynamically allocate memory 4s*'

A-1rans = matrix(I,M,I1,N);
A = niatrix(I,N,I,M);
averageface = vector( 1,N);
L = matrix(I,M,l1,M);
d = vector(I,M);
v = matrix(1,M, 1,M);
mag = vector(l, M);

I****** initalize matrix and vectors *****d

forOj=Ij:5Mj++)
for(i=1 ;i<N;i++) f

A-araniljliiI=A~iJWl=average-facefii=-O.O;

printf(*The files being trained on are :\n\n*);

for(k=l; k<M; k+-i){

fscanf(train, %s \n.% filenamne);
printf(I \ t t:% s \n, filename);

facein = fopen(filenamne,Ir

for(j=I j<5Nj++){
fscanf~facein, %f \ n",&AU]Ik]);

fcloseffacein);

I***Normalizing Data by dividing by 255 *****'d

for(j=l j:5Mj++)
for(i=I ;i<N;i+.){

I***********Calculate Average Face **********

I4printf("U! CALCULATE AVERAGE FACE~n '9; 4
face..avg=fopen(1avgjface. .dat %*w");
for0i=I ;iN;i++)1

temp60.O;
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for(j=lj<Mj++)
temp:-t(emp+A[i1tj];

average-face Ii]=templNt
fprintf(face-avg, I%f W~, averageiace[i]);

iclose(face..avg);

I****** printf("!!! SUBTRACTING OFF AVERAGE FACE \n"); *****4

for(j=1j•Mj++)
for(i=1 ;i<N;i++){

A[iJj~j-A[iJjUJ-average..faceti];

I***CREATING A TRANSPOSE *****4

1* printf("M! CREATING TRANSPOSE MATIX \n");4

for(j=I j5M~j++)
for(i=I ;i<N;i++) {

I***fout=fopen("l.dat", "w);*s****4

1* printf("!!! Multiplying A trans and A to get L-\n"); 'V

for(i=I ;i<M;i++)
foroj=lj<Mj++) I

temp!U.O;
for(k=I ;<N~k++){

temp=temp+A-.trans[iJjkj*Ajkfj~j;

I*s****fPrintf(fouz, "%lAn", temp);*****4

L[iIUI=temp;
I***printfC!!! Writing Output \n"); ******4

/**** ("!!FREE MATRIX k.TRANS \n"); *****4

freeirnatrix(A-trans, 1, M, 1, N);

I*printf("!!! doing jacobian of L \n"); 'V

jacobi(L,M,d,v, &nrot);

eigsrt(d,v,M);

*fevalkfopen('eigen-val", "w");
*for(j=lj!<Mj..) {

l prnntf(feval, "%l\n", dLi));

*fcose(feval);

I*****prinitf(!! Writing eigenvectons \n");

8fevex=fopen("eigen-vec". "w");
8for(i=I;i<M;i+i-){

*fortj=Ij<MJ..+){

* prinUf'fevcx, "%A~n", vff ii);

* )close(fevex).
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I****** printf("!!! Initializing Eigenface Matrix \n"); *****4

u = matrix(IN1M);
for(k=l*k<M; k++)

for(j=15'<N;j++)
uUIIkJ--O.O;

I*pnintf("!!! Calcualting eigenface \n"); 4

for(k=l;k<5M; k++){
fbr0i=l;i<M; i++){

forjr<;j+
uUjtkflvViJ [kI*AUI[i]+uUI~kI;

I***finding magnitude of eigenface *****4

l4printfC!!! Opening train.out file for Eigen faces \n"); 4
tempfile = fopen("train. out*, w');

h--48;
1--48,
strcpy(filenarme *eigen face*)

for(k=1; k<M; k+i-){

else{

fprintfqtempfle, Wss% filename);

fprintf(tempfile, %c%chl)

fprintf(tempfile."%s\n'," .dat*);

lclose(tempfile);

I*pnintf("!!! Writing eigenface \n");4

tempfile = fopen(*train. out", *r;

for(k=l; k<M; k++){

fscanf(tempfile, '%s\n, filename);

facein = fopen(filename. ",)

I**sprntfC"%s\n", filename); *****4
I*** printf(facein, "%f\n", magfkl); *****'V

for(j=Ij:Nj++){
fprintf(faccin," %g\n., uUJ[kl);

fclose(facein);

fv'iose(tempfile);

I******printf("!!! FREEING A MATRIX \n.);**s**d

freejnarix(A, IAN 1,M);
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free-matrix(u, I ,N, I,M);

void mat-col-mag(u, N, M, mag)
float **u, mag[j;
int N,M;
{ffloa b;
int k, j;
double sqrt 0;

for(k=1; k<M; k++) {
b=O;
for(j=I; <<N;j++)

b=uj[EI * u[j][k] + b;
mag[k] = sqrt( (double) b);}

}

6.12 seg.grab.c
/,
• File: seg.grab.c
• Created: July 1992
• By: Kevin Gay

• Purpose: Uses the VideoPix Tool to grab segmented images.

• Assumes:

• Modified: 12 Aug 92

• By: Ken Runyon

• Why: I changed the linked list of images to return only one good
image instead of returning every attempt. This grab is used for
training and recognition routines.

#include <stdio.h>
#include <sys/types.h>
#include "vfc_lib.h"
#include "globals.h"

extern struct head.ptrs *z.segmento;
extern int z-storeimageO,

void seg.grab(filename)

char filenamet];

{
u.char *face, *ptr;
register int i;
struct head-ptrs *temp-ptr, *face.ptrs;
char okay, tryagain ='y',

storefIleI30],command[80],
waste[2];

int done=O;

I*** will store image as a "red"file **4

sprintf(storefile, %ss",filename,". red');

I*** loop to detect motion and segment face **4

while((tryagain == 'Y' )l I(tIryagain == 'y')){
done = 0;
printf(*Please look at camera until you hear a beep. \n");

I*** assign segmented images to facepitrs linked list **4

face-ptrs = (struct head.ptrs *)zsegmento;
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if(faceptrs = NULL)
prinf( Trouble getting images\n*);

else {
while(face-ptrs--next / 0){

face.ptrs = face-ptrs--next;
I

if(z-storeimage(face-ptrs-.head,storefile,SM-SIZF<0)
fprintf(stderr,"Unable to write to file\n*);

sprintf(command,"%s%s%s%s%s","bin2gray ,filename,
".red ,filename,".gral);

system(command);
display(32,filename, I);
printf("\nls this picture okay? <y or n> ");
while(!done){

scanf(" %c',&okay);
gets(waste);
if(okay 'n' II okay== 'N'){

free(face-ptrs);
tryagain = Iy
done = 1;}

else if(okay== 'y' Iokay== 'Y'){
free(face-ptrs);
sprintf(command," %s%s%ss"rm ".filename,'. red*);
system(command);
tryagain = 'n';
done = 1;I

else printfP \nls all of your head in the picture? <y or n>');}
I
}

}/* end of seg.grat4

6.13 center.c
******************************* **************** ****

• Name: center.c

• Description: This program correlates the input image with a
• reference image and shifts the input image so
• that it overlays the reference image as much as
• possible. This is the current way to make the KL
* transform invariant to shift.

• Written by: Pedro Suarez (at least that ' who I got it from)

* Date: Summer 91

• Modified by: Ken Runyon

• Date: 15 Jul 92

* Modification: Converted it forom stand alone c to a module,
• changed the output file to write back to the input,
* pulled ourrescaleO;asaseperateprocedure. **********************************************************

#include <stdio.h>
#include <math.h>
#define SQR(a) (a)*(a)
#define loopi(A) for(i--0;i<(A);i++)
#define loopj(A) for(j=0j<(A),j++)

void center(Row, refile, imagefile)
int Row;

char refile[I,
imagefile[];

nt x,yij,
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Col =Row,
location[3J;

float *xI,
*x2,
*vectoro,
**matrixO,
** image 1.
**image2;

FILE *foul,
*dat-ilel,
*datjfile2,
*out-file;

void fourno;
void Correlatco;
void max-findo;
void Claze30;
void shift();
void rescaleo;

Printf(' \nCentering %s\n',imagefile);

I***************Set Up Files ************

if ((dal-file I = fopen(refile, "r")= NULL)

printf("I can't open the reference image");
exit(- 1);

if ((dat-file2 = fopen(imagefile, r') NULL)

prnnif("I can't open the input image,);
exit(- 1);

I****** allocate matrices for images *****4

imagel = matrix(0, Row-I1, 0. Col- 1);
image2 = matrix(0, Row- 1, 0, Col- 1);

/****** read the reference face into the lstmatdx *****4

for(y=-0; y<Row; y++)
for(x=0O; X<CoI; x++)

fscanf(dat-filel. I %f \n',&imagel IxJIyJ; I** (takes care of initialization) *4
fcose(da-i~lele);

/****** read the inputface into he 2nd matrix *****'d

for(y=-O; y( Row; y++)
for(x=0O; x<Col; x++)

fscanf(dat-file2, 'f \n ' &image2[xllyJ);
Mcose(datJfile2);

I****** Open image file as output file *****4

if (Outfile = fopen(imagefile, "w')) == NULL)
I.
pnintf(' I can't open the output file");
exit(- 1);

I***allocate two vectors and initialize them *****4

xl = vector(0,2*Row*CoI- 1);
x2 = vector(0,2*Row*CoI- 1);

Ioopi(Row*Col)txl2*iI :xI [2*i+l I = 0.0;
x212*iI= x2[2*i+IJ =0.0;
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/****** Put the images into every other space of the column vectors *****4

loopi(Row) {
loop'(Col) (float) xl[2*(i*Col+j)] = imagelll[i];
loopj(Col) (float) x2[2*(i*Col+j)] = image2oj][i];}

I****** Finds the peak correlation value *****4

Ciate3(xI, x2, Row, Col, location);
if(tocation[01>(ColIM) location(0] = -(Col - location[0]);
if(location[ I ]>(Row/8)) location(lJ = -(Row - location[ l1);

shift(image2, Row, Col, location);

rescale(image2, Row, Col);

for (y = 0; y < Row; y++)
for (x = 0; x < Col; x++)

fprintf(outifile, 1%4. Of\ n ,image2[x][y]);
fclose(out-file);
freeinatrix(image 1,0, Row- 1,0, Col- I);
free-matrix(image2,0, Row- 1, 0, Col- I);
free-vector(xl,0.2*Row*Col- 1);
frec_vector(x2,0,2*Row*Col- I);

**********************H THE END OF CENTER .C**********************

NAME: CJate3
DESCRIPTION: This routine determines the number of rows and columns that

the input image needs to be shifted by to be centered on the
reference

void C-ate3(x 1, x2, Row. Col, location)
int Row, Col;
int location[];
float xli], x211,

FILE *outjfile;
int n[21, i, j;
float *output,

temp.
**matrixO,
**mat.output,
*vector);

/****** Allocate Memory for Arrays *****4

output = vector(0,2*Row*Col- 1);
maLoutput = matrix(0, Row- 1, 0, Col- I);

I****** Assign Initial Array Values *****4

n[01 = Col;
nPlI = Row;

Correlate(x1, x2, output, n, Row, Col);

I****** Store The Magnitude Results *****4

loopi(Row)
loopj(Col) {

temp = sqrt((double)SQR(outpt[2*(i*Col+j)])
+(double)SQR(output[2*(i*Col+j)+I ]));

maltoutputj][i] = (float) temp;

max-find(mat-output, Row, Col, location);
free-vector(output,0,2*Row*Col- I);
free.matrix(matoutput,0, Row- 1, 0, Col- i);

This is the end of C.Jaie3 *****4
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/* *** ** **** *** **** *** *** ******* ***** ***** ***** ***** ** ********** ***** ****** *

NAME: Correlate
DESCRIPTION: This routine shifts the input image over the reference and

calculates a corelation value for each location

void Correlate(input 1. input2, output, n, Row. Col)
float inputl [],

input2[].
output[];

int n[],
Row,
Col;

mt i;
float *tempi,

*temp2;

tempi = vector(0,2*Row*Coi- I);
temp2 = vector(0,2*Row*Col- 1);

ioopi(2*Row*Col){
tempi[i] = input Ili];
teinp2[il = input2[i],}

/****** Take Fourier Transform of Input Functions *****4

fourn(templ- i, n-I. 2, 1);
fourn(temp2-1, n-1. 2. 1);

/****** Conjugate One of The Fourier Transforms *****4

loopi(Row*Col)
temp2[2*i+ I ] = -temp2[2*i+ I;

I****** Multiply Fourier Transforms Together *****'

loopi(Row*Col)f
output[2*iJ = tempi 12*i]*temp2l2*ij - tempi [2*i+ ll*temp2[2*i+l 1; I, Real 4
output[2*i+I I= tempi [2*ij*temp2[2*i+J I+ temp2[2*i]*templ [2*i+l 1; I Imaginary 4

/****** Take Inverse Transform to obtain Correlation *****4

fourn(output- I. n- 1, 2, - 1);

/****** Rescale to get proper magnitude *****4

Ioopi(2*Row*Col)
output[i]/= Row*Col;

1***************** *********************************************************

The result of the correlation is that thefirst element of the output
matrix is for zero shift, the next element for shift one to the nght and
so on. This puts results into a format which humans can understand.

/** Free up the memory when finished *4

freevector(templ,0,2*Row*CoI- 1);
freevector(temp2.0,2*Row*CoI- 1);

End of Correlate Routine ********************

NAME: max-find
DESCRIPTION: This routine finds the max value in a vector

void max-find(mat.outpul, row, col. location)

float **mat..output;
int row,

col.
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.1location[];
int i, j.

count,
temp-!,
temp..j;

float max-,

/****** Check for the max and min value in the data *****4

max = mat-output[OHOI;
count=0O;

for"-0; j<row; j++)
for(i=0O; iccol; i++){

iftmat-outputlilDl>rax){
max = mat-output[iJUI;
temnp.i = i; temp-j = J;

count++;

I*printf("'\nlstshift=%d\n",tempJi);
pjIntf("'\n2nd-shift=%.~n ",temp-j.4j*
location[0J=temp-i; location [11=temp-j;
if((location[0l>coII8)I I(location[0I<(0 - coMI))) locationlO]=0O;
if(location[ I I>rowI8)1 I(Iocation[ I 1<(0 - rowl8))) location[ 11=-0;

NAME: shift
DESCRIPTION: This routine takes a image shifts

void shift(image, Row, Col, location)

float **image;
int Row, Col;
int location[];

int **temp.image,
i,x'y,
nXk
new-row,
new-col,
xshift,
yshift,
absO;

float **matrix(),
**shiftediamage;

xshift = location[Ol;
yshift = location[ I;
I*pilntf'('\nxshift = d\n",xshift);
pnnbtf("\ nyshift = %A n",yshift)pd

new..row= (int) Row+ 2 * abs(yshift);
new..col=(int) Col+ 2 * abs(xshift);

shifted.image = matrix( -abs(xshift), new-col, -abs(yshift), new-.row);

I*** initialize matrix **4

for(y= - abs(yshift); y<new-row; yi-+)
for(x= - abs(xshift); x< new..col; x++)

shiftediamage~xJ[yj=127.O;

for(y=-O; y<Row; y++)
for~x=0; x<Col; x++){
shiftedjmage[x+xshiftjjy+yshif'tI = imagexlx[yJ;

for (y=O0; y< Row; y++)
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for (x = 0; x < Col; x++)

image[xjjyJ=shiftedimage[xJlyJ;

free-matrix(shifted-image. Row, Col, location);

6.14 coefficients.c

I** ****************************** ************************

• Name: coefficien.ts.c

* Description: This program maps a test face onto the set of
• eigenfaces and stores the KL coefficients in
* testset.ng.

* Written by: Pedro Suarez (Originally recon.c)

• Date: 24 July 91

• Modified by: Ken Runyon (Chopped off reconstruction)

* Date: 22 Jun 92

• Modifications: I decided we didn't need to actually reconstruct and
• store a face. I also made the stand alone program
• into a module which is called by thesis.

#include <stdio.h>
#include <math.h>

void coefficients(dimension, num.coefs, infilename, outfile)
int dimension,

num-coefs;

char infilename[J];

FILE *outfile;

hILE *facel, *eigenin, *fweights, *train, *face.avg;
int ij. N, M, atoiO;
float *vector(, **matrixo, **free-matrixO, *averagelface, **u, *pedro, *reconface;
float *w, *I;
char filename[81],*strcpyO, user[8],ext[IO0;

printf(" \nPulling Coefficients for %s\ninfilename);

/****************** Set Up Files ************************

I*** Open Test Face **4

if ((facel=fopen(infllename," r*)) = NULL){
printf(*I can't open the input file");
exit(-I);
I

/*** Open Avg Face **4

if ((faceavg=fopen( avgface. dat"," r == NULL){
printf("I can t open avg-face. dat. ");
exit(- I);}

I**,*'-* set up matrices *****4

N = dimension * dimension:
M = num.cocfs;

u = matrix(l,N, 1,M);
pedro = vector(), N);
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averageiface = vector(l1, N);
reconface =vector(I,N); I***DOINEEDTHIS?**4
w = vector(l, M);
I1= vector(I, N);

/**s****Initalize Matrices *****d

for(j'=l;j'<M; ++)
for(i=lf3<N-;i.+)
wU]=u~iffiJ=I[i]=pedro[il=reconface[iJ=average-faceli1l=O.O;

I*****Load the Test Face into the Pedro Vector ********4

for(j=lu*<N.* +)
fscanf(hcI,' f \n', &pedrolj]);

fclosefface I );

I*****Load the Average Face into the Average-Face Vector ***4

l~scn1Ta&!-v %f \ n , &averageJ'aceUjj,;
fclose(face..avg);,

I****** Load the Eigenfaces into Matrix U *****4

train =fopcn( *t rai n. out, "r"

for(j=l;j:czM;j++){
fscanf~train, I%s \ n. filenamne);
eigenin = fopen(fllename, r)
for(i=l~i<N~i++){

fscan C(eigenin, %f\ n ,&u[iIU]);

lclose(eigenin);

lclose(train);

I****** Subtract the Average Face from the Test Face *****d

for(i= I i<N~i++)
Ili]= pedro[iJ - average-face[i];

I****** Calculate the KL Coefficients *****'V

for(j=l;j<M; ++)
for(i=I-, iN; i++)

wul = uliIUI* Ili]+ w~j);

I****** Write the Coefficients to the *..coefs File *****'d

for(i=1; K<M; i++)
fprintf~o-utfile, "%f ,wlij);

I****** Write the Namne of the Input Face to *..coefs *****4

i= 0;

if (isalpha(Wipienanef ij))

else
infilename[ij = 0;

strcpy(user,infilenaim);
fpnintf(outfile, "%s\nl, user);
free inarix(u, I ,N, 1,.M);

I * end coefflcients.c ,1
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6.15 net-coefficients.c

* Name: neL~coefficients.c

* Description: This program maps a test face onto the set of
* eigen faces and stores the KJ coefficients in
* train..coefs in a format the neural network can read.

*Written by: Pe-dro Suarez (Originally reconxc)

*Date: 24 July 91

*Modified by: Ken Runyon (Chopped off reconstruction)

*Date: 22 Jun 92

*Modifications: I decided we didn't need to actually reconstruct and
* store a face. I also made the stand alone program
* into a module which is called by thesis.

#include <stdio.h>
#include <math.h>

void net-coefficients(dimension, num-coefs. infilename, outfile, classfile,
num-class)

int dimension,
num-coefs,
num..class:.

char infilename[I;

FILE *outfile,
*classfile;

6IL *facelI, *eigenin, *train, *face..avg;
int 1,j.I N, M, atoiO;
static Int count = 0, exempla = 0;
float *vectozO, **matiixo, *averageiace, **u, *Pedro, *reconface;
float *w, *I;
char filename[811, *strcpO, user[8], ext[IO];
static char user I [9],user2[9b

printf(-\nPuiling Coefficients for %sWn,infllename);

I**************Set Up Files ************

I**Open Test Face **4f

if ((face I =fopen(infilename," I)) = NULL){
printf(1I can't open the input file');
exit(- 1);

I**Open Avg Face **4

if ((face..avg--fopen(*avg-f face. dat 1, r")) == NULL){
printf(* can'It open avg-face. dat. )
exit(- 1);

****set up matrices *****'4

N =dimension * dimension;
M =num..coefs;

u =matrix(l,N, 1,M);
Pedro = vector(l, N);
average..fae = vector(l, N);
reconface-vector(l,N); I*** DOINEED THIS? **d
w = vectorf 1. W)
I= vector(l, N);
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I***Initalize Matrices *****4

wUJ=uliffji=I~i]=pedro[il=reconface(il=average-facefil=-O.O;

* * ** ** * ** Load the Test Face into the Pedro Vector ****4

for(j=l '<NJ'++)
fscanfTapce I. %f \n', &pedrolj]);

fclose(face I1);

* * ** ** * ** Load the Average Face into the Average-Face Vector**

f scaf~faeag, %f \n 1,&average..face~jj);
fclose(face..avg);

I****** Load the Eigenfaces into Matrix U *****4

train = fopen( Itrain. out",*r*);

for(j=l ;j<5M;j++){
f'scanf(train, "%s\nl, filename);
eigenin = fopen(filename, r
for(i=l ;i<N;i++){

f'scanfC(eigenin, *% f\n',&u[iJUj);

lclose(eigenin);

kclose(train);

I****** Subtract the Average Face from the Test Face *****'V

for(i=lI i<N;i++)
I[iJ= ii&Iro~ij - average-facelij;

/****** Calculate the KL Coefficients *****4

for(j=I;j<5M; ++)

wujJ = WOWfj* Ifli]+ wuji

I* * *** Write an exemplar number to the file ****

fprnnhf(outfile, %d "exemplar);
exemplar++;

I* ** * ** Write the Coefficients to the *..coefs File 4**'

for(i=l; i<M i++)
fprinif(o-utfile, I% f 1,w[i]);

I****** Write the desired outputs to the *xcoefs File *****4

i= 0;
while(infilename[i] 96 0\'

if (isalpha(infilenanie[iJ))

else
infilename[iI = 0;

strcpy(userl ,infilename);

if(slrcmp(userl ,user2)){
fprinif(classfile,* %8s\n*.infilename);
count++;
strcpy(user2,user 1):

ror(I=num..class;I> 1 ;1--){
if(count=l-)

fprintf(outfile, % f *,0.90000);
if(count if)

fprintf(outfile,1%f *,0.10000);
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upntf~ file, *\n*);
freaarix(u, I,N, I,M);

} * r id coeflicients.c 'V

6.16 displayxc

"* displayxc
"* converts a .gra file to de and
"* displays it in open windows using
"* xli.

int dimension,
num..pro;

char filename[];

void display(dimension, filename~num..pro)

char command[80J;

static int counter=0O;

sprintf(command, "%s%s%s". *cp %. filenanie, .gra temp. rec");
system(command);
system("float..gray temp. rec temp. red *);
switch(dimension){
case 640:
system('graytorle -o temp.rie 640 480 temp.red");

break;
case 128:
system("graytorle -o temp.rle 128 128 temp.red9;

break;
case 64:
system(*graytorle -o temp.rle 64 64 temp.red"l;

break;
case 32:
system("graytorle -o temp.rle 32 32 temp.red');

break;
default:

pnintf(* I donIt know what size the gra image is.,);

system(Irleflip -v -o hold.rie temp.rle");
sprmntF(command,1%s%s%s1,mv hold.rle , filename,*.rle');
system(commniad);

sprintf~command,*%s%s%s",x1i -quiet -zoom 300 -smooth -smooth % filename, ".rle&'1;

1* counter.+;'V

system(command);
1* iftcounter == num-pm)4

counter = 0;
system("nyn *.red"),
system("rm temp.* ");
system(n~ri *.ne");
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6.17 globals.h
l,
* File: globals.h
, Created: August 1992
* By: Kevin Gay

, Purpose: Put all global variables and definitions in one place.
,

, Assumes: vfc.lib.h is also included - all the vfc routines and
* vfc definitions are in vfcJib.h.

* Modified:
* By:
* Why:

#define PORT *VFCSVIDEO'
#define YUVSIZE VFC.NTSCHEIGHTVFCYUVWIDTH*2 1* 720x 480x 2bpp 4
#define NTSC.SIZE VFCNTSCWIDTH*VFCNTSCHEIGHT 1*640x4804
#define SM-WIDTH 32
#define SM.HEIGHT 32
#define SM-SIZE SMWIDTH*SMHEIGHT
#define MOTION.-THRESHOLD 3000

struct region

mnt x;
int y;
int width;
int height;
struct region *next;

struct hw.controls

VfcDev *vfc..dev;
int colormap.offset;
}.

struct image-ptrs
f
u-char ,imagel;
u-char ,image2;
u.char *motion;

struct headcptrs

u-.har *head;
struct hea•Lptrs *next;

6.18 gwind.c
I****************** ************************************* *********

"This routine takes an image by a guassian window.

written by: Pedro F Suarez
29 July 91

Modified By: Ken Runyon
16 July 92

Modification: Just made the c program a module to be called by
thesis.c

#include <stdio.h>
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#include <mazh.h>
#definepgi 3.1416
#define SQ(a) a~a

void gwind(row~image-file)
int row;

char image-file(J;

int col = row,
i, j, k, count,
outval, tempi. temp-j;

FILE *fin. *fout. *fo;
float **p, **w. **matrixo. test,

xmean = 16,
xvar =I10,
ymean = 16,
yvar = 14,
normal.
inval, max, min;

double expO;

extem void rescaieO;

printf(,\nGaussian Processing %s\n~image~file);.

I**************Set Up Files ****************

if ((fin=fopen(image-file, "r *) == NULL){
prinztf(I can't open the input file');
exit(- 1);

/*s**s************Allocate MemoryToMatrices********

p= matrix(0, row-I1, 0, col- 1);
w =matrix(0, row-I1, 0. col-I1);

I******s*********Read The Input File Into The Matrix ********4

for"-O; j<row j'++)
for(i=0; i<COl;' i++)

fscanf(fin, %f n .&p[iIUI);

fclose(fin).

/****************Calculate the Gaussian Window *ss*****

normal = 1/(2 *pi *xvar * yvar);

for(i=0O; i<row; i++)
for "60; j<col; j++){

w,1ijUJ= exp ((double) -0.5 *( SQ((i-xnmea)xvar)+ SQ((j-ymean)/yvar)));
pliull NM1 liI * WINi);

rescale(p, row, col);

rescale(w, row, col);

I****************Reopen the input file as an output file ******

if ((fout=fopen(image~file,nw*)) = NULL){
printf('I can't open the output fuel);
exit(- 1);

I****************Write the Result Back to the Input File ******

for(j=0; j <row; j++)
for(i=0O; i<col; ii..)
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fprintf(fout, "%4. Of \n ", p[i]jU]);

fclose(fout);

I************************ Store the gauss data into wind.dat **********4

I*fo = fopen("wind.dat", "w");

fotU--O;j<row;j++)for(i-O0; *<col; i++)
fprintf(fo, "%4.00\n ", wfilJj);

fclose(fo);4

freenmarrix(p,0, row- 1, 0, col- I);
free-matrix(p,:, row- 1, 0, col- 1);
}

6.19 mdct.c

mdct.c

This program takes the 2-D Discrete Cosine Transform (2D-DCT) and the inverse (2D-IDCT) of an NxNx8 bit image.
The code is designed to work with any square image, but could be easily modified to work with any size image.

The program is designed to do a symmetric transform if so desired, This option merely flips and folds the image to 2Nx2N
pixels then takes the DCT. This is not necessary, but can be interesting. I can't think of any practical reason to do this. It
was thought to be necessary to have an even function when this research started.

nnhtils.o must be included in the make file.

The Cosine Kernel matrix must be in the same folder. This is generated by CreateCMatrix.c.

Written by Jim Goble, June 1991
Disclaimer -

Copyrighted by the Air Force Institute of Technology and by James R. Goble. May be used for any non-profit application
without permission. This code is presented as is, and no claims at- made as to suitability for other applications. It is not
guaranteed to be error free.

Modified by: Ken Runyon, Sep 92

1. Redid the structure to make the program a module to be called by train and recognition programs.

2. Got rid of prompts for image size, non-symmetrc/symmetric transform, and inverse transform.

3. Also pass infile as a parameter, and hardcode outfile as train-coefs.

4. Shortened resulting dct component matrix to just ,ake an 8 x 8 rectangle of the fist coefficients.

5. Added the user name to the output to create the train-coefs file.

4

#include <stdio.h>
#include <math.h>
#define SQ(A) (A*A)

void dc-transform(N,ifname,DCTfile,feature-dimensions)

FILE *DCTfile;
char ifname[];
int N,feature..dimensions;

ILE *Cfile, *Ifile;
char user[8J, answer, answer2;float **matrix); /* prto 7type call to nrutil routine 4
float **CosMat, **I os at, **TranMat, **TempMat; A, reserve pointers for my matrices 4
float **ImMat; /* reserve pointer for my image matrix 4
int ij,k, NN, N2, Z, valid, features;
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printf(" %d\ n%s \ n%d\ n .N.ifnamefeature-diinensions);
/,

Get the input image. This routine also checks for file I/0 errors.

if((lfi1c=fopen(ifname,I r'))==NULL)

printf('File does not exist! %sifname,1\n1);
printf("\n');
} 1* end of if 4

1* Open the Cosine Matrix CosMat.dat. The matrix is always kept in this file. It is assumed that the proper size matrix is
stored here. If not, generate a new one with CreateCMatrix. Code checks for file errors, but not for incorrect matrix size.
C, being the wonderful excuse for a language that it is, will run the program with whatever happens to be in memory if you
do not nave the proper matrix size.

4
if((Cfi1ezfopen( CosMat. dat, r" ))==NULL){

printf(:Can't open file! CosMat.dat\n Run create.");
printf( \ n');
exit(O);
} I* end of if 4

I* Set parameters for DCT 4

NN=N- I;
N2=N-I;
Z = N2;

printf(fN = %d\n NN = %d\n N2 = %d\n Z %d\n*,N,NN,N2,Z);
ImMal = matrix(ON2,0,N2);
ICosMat = matrix(O,N2,ON2);
CosMa = matrix(O,N2,0,N2);
TranMat = matrix(O,N2,0,N2);
TempMat - matrix(O,N2,0,N2);

I* Initialize the Appropriated Matrices 4

for(i=0 i<N2; i+M)fo ~=0; j<N2;j++)
TranMali[ijl=TempMat[i1Uj--0.0;

I* Read in the cosine matrix from disk. 4
printf(" ! .! Opening and Reading Cosine Matrix! :\n );
Cfile=tfojen( CosMat. dat, r);
for (i = 0;i < N2; i++)
for 0 = 0; j _? N2; j++)
iscanf(Cfile," % f ",&CosMazji]j]);
ICosMatU][i] = CosMatl[iji;}

fclose(Cfile);
printf(!!! Finished Reading Cosine Matrix! :\n );

pnntf(! H Opening and Reading Image Matrix! \n );
or(i =O; i < N2; i++)

for(j = 0.j i N2;j++)

Iscanf(file, % f ,&ImMatji][j]);

prinif('Taking DCT !:\n );

kclose(Ifile);

printf(*!!! Finished Reading Image Matrix! :\n );

I, Do DCT 4

for (i = 0; i < N2; i++)

lor (j - 0; j < N2; j++)

{
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for (k = 0; k < N2; k++)

lempMat[i]U] = TempMatjijUJ + CosMat[i][kI*lmMat[klUj;}
}

}

for (i =0; i < N2; i++)

or (j = 0;j : N2;j++)

lor (k = 0; k < N2; k++)

LranMati][j] = TranMat[i]U] + TempMat[i][k]*ICosMat[kIjU;}
}

printf(*Finished Taking DCT I :\n ");

printf(*Writing Output!: \n ");

/* Now output the results to the file named above. 4

printf("Writing Output! : \n 1);
* Now output the results to the file named above. 41

for (i = 0; i< feature-dimensions; ++i) {
for a = 0;j _< feature.dimensions; ++j) 4

fprintf(DCTfile," % f \ t, TranMatjijUI);
} /* end of n for loop 4

}1* end of m for loop 4

/****** Write the Name of the Input Face to *.coefs *****4

i =0;while(ifname[i] 0 O
if (isalpha(ifnameli]))

i++;
else

ifnameli] = 0;

strcpy(user,ifname);
fprintf(DCTfile, I %s\n", user);
system("1s *.gra*);

) /* end of DCT.c 4

6.20 rescale.c
l** ************************************************************* ************

NAME: rescale
DESCRIPTION: This routine scales the matrix into the 0 - 255 range

#include <stdio.h>

#include <math.h>

void rescale(output, row, col)

float **output;
int row, col;

int NEW.MAX = 255,
NEW-MIN = 0,i, j,
count;

float min,
max;

I** Check for the max and min value in the data *4
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min=rnax=outputlOj[OI;
counti2O;

fo"-~o ;j<row; j++)
for(i=-O; i<col; i++){

iftoutpuflifju>max)
max=outpliub~]J

if(outpuzli fl<min)
niin=outputijiujj;

count++;

/** Now translate data and wnt~e to output file *4

forUj=O; j<row; j++)
for(i=-O; ikcol; i++)j

output(iUIj = ((outputliljIj-min)*(NEW..MAX-NEW..MIN)/(max -min) + NEW-MIN);

6.21 grab.c

*File:jgrab.c 19

*By: Kevin 6ay

*PurPOSe: Thscode is intended to collect 'in images in a loop num-loop.
ahpas thnj the 1loop takes in YlV image dala,

con ves the daato 8-bit gray, square pixel dataX and
save the 8-bit data in a file labelle with person's name.
(Note: L-binarize-gra allows inmage to be binalried

uschangfe z.storeujunae vargray-data to bin-data]
Nluu'mber of loops (gum loop) and person's name (person)
are entered during execution.

Assumes: Signal coming in S.-Video port, NTSC format

#include <stdio.h>
#include <syshypes~h>
#include *vfc_1ib.h*
#include 'globals .h

extern struct hwicontrols *z..set~vfcilwO;
extern u-char :z..grab-grao;
extern u..char *zJ-educeo;
extern int z-storeamageo);

int dimension;

void grab(dimension)

u..char *gray-data. *sm-data;
struct hw..controls *hw-ptrs;
char filename[301;
int S..WIDTH =dimension,

S-HEIGHT - dimension,
S-SIZE -S..WIDTH * S.HEIGHT;,

I*******'i****BEGIN IMAGE GRABBING LOOP *.********

printt(\nGrabbing the Image\n");

hw4ptrs -(stnict hw.controls *)zLsetLvfc.hwo;,

*Read in a 8 bit gray image
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gray.data=(u.char ,)z.grab-gra(hw-ptrs);

if(gray-data == NULL)
{
printf('ptr is null\n');
exit(l);)

/,
• Create a reduced image from the 8 bit gray data.

sm.data=(u..char *)z.reduce(gray.dataVFC.NTSC-WIDTH,VFCNTSCHEIGHT,
SWIDTH,S.HEIGHT),

ift(sm-data = NULL)
{
printf(*small ptr is null\n");
exit(l);}
l*
• Create name for image data and store in file.

sprintf(filename," %s ,user. red");

if(z-store-image(sm.data, filename, SSIZE) < 0)
fprintf(stderr,IUnable to write %s to file\n ,filename);

I************** END IMAGE GRABBING LOOP ***********************4

1,
* Now destroy the hardware and free the memory.

vfc.destroy(hw.ptrs--vfc-dev);
free(sm.data);

free(gray.data);
free(hw..ptrs);

) l*** end grab.c **4

6.22 k.nearest.c
I***** ****************************************************

• Name: k-nearest.c

• Description: This program finds the k nearest neighbors for a given
• test image where k is the number of prototypes for
• each person in the training set. The nearest neighbors
• are rank ordered by euclidean distance. Scores for
• each person found are calculated by summing weighted
• values for each position in the ranked nearest neighbor
• list. The winner is the person with the highest score.

• Written by: Ken Runyon

• Date: I1 Sep92

#include <stdio.h>
#include <math.h>
#define MIN.ARRAY.SIZE 20
#define numberblocks 300
#define START 100000
#define SQ(A) (AA)

typedef char *string;

void kiae t(num.protos,num.coefs,num.train-faces)
int num-protos,

num-coets,
num.train-faces;

6
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FILE *ftest,
*ftrain,
* fout;

float distance.
temp.
bottom.
*average,
*sd,
*vectorO;

int j,
j.
k.
begin,
max;

char namel20j.
commandI801,
filename[301;

double s4qrtO;

struct block

Loat *feature-vee;
char name12OI;
float distance;

struct rank..array

char nameI2Ol;
int score;
float distance;

struct block atest[ 11J;
stnict block btrainlnumberblocks);
struct rank-.array score..pad[MIN..ARRAY-SIZEI;

prnnzf(*\nFinding the Nearest Neighbors\n*),

I*******.**.*******Open the Files *******

if ((ftrain~fopen(" train-coef s'. r*))-= NULL){
prinif(II can't open the train coefficients file*);
exit(- 1);

if ((fest-fopen~t est-coef s.Ir 1)) =--NULL){
printf(II can't open the test coefficients file');
exit(- 1);

1***Initialize bt'ain block *.****d

for(i=l; iKnum-jrain-faces; i++){
btrainf~ifeature-vec=vector( I, num.coefs);
btrain~ii.distance 0.0A,

Initialize atest block ***

atest(0I.feature-vec=veCtor( I. num-.coefs);
atest[01.distance - 0.0;

i****** Cwaac a Couple of Vectors *.**W*4

averageswector( I, num..coefs);
sd-vector( 1, num-coefs);

I**i*Initialize those Vectors *s***d
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for(i=l ;i<num-coefs; i++)
averagieji]=sdfi]=O.O;

I**** Read the Test Coefficients into the atest Matrix 4

atest[Ol~feature-vecUj=temp;

I***Then Read in the Name that Belongs to those Coefficients *****4

fscanf(ftest, "%s\n*. atest[Ol.name);

Read the Training Database into btrain Matrix ***

for(i=l; i<num-jrain-faces; i++){
for(j=l; j<num-coefsj++) f

f'scankfirrain, *% f , &temp);
btrainhiJ.feature..vecUI~temp;

f'scaif~firain, I% s \ n, btrainf i].name);

I***Statistically Normalize *****'d

for(j=l ;j~num-coef~s-j++)
averageU +=atesttOJ.feature-vecUj]/(num-train-faces + 1);

for('=l 1;j<num-coefs; j++)
for(i=I-1<num-trainJaces; i+i-)

averageM+=btrin[i].feature-vec~IIOnum-train-faces + 1);

for~ I;j<num..coefsi++)
sdXi +'7-atest[OJ]feature-veco] - averagebJ)*

(atestfOl.feature-vectjJ -averageljJ);

for(j=l; <num-coefsj++)
for(i= 5 num-train-faces;i++)

sdlQjI -(btrainhil.feaure..vecU1- veagU
(btraintil.feature-vecU] - average -avrgeji;

for(j= I ~<num-coefs j++)
sdoli W'sqrt( (double) sdijl);
sd I ((double) l/rmzmirain-faces) * sdUi;

I**** Calculate Euclidean Distance to Each Prototype ***4

for(i=1; i<num-train-faces; i++)(
temp=O,
for(j=l ;j<num..coefsj++){

temnp = (atest[01.feature-vecljj - btrain[il.feature-vecU])*
(atest(O1.feature-vecUJ - btrain[iI.feature-vecU]) + temp;

btrain(ii.distance = sqrt ( (double) temp);

I**** Store the k-nearest neighbors rank ordered by distance ***4

for(j= 1; j num..pwtos; j++){
temp WITARlT;
for(i=l; iKnumn-rain-faces; i++)

if((birainjil.distance < temp)&&(btrain[iJ.distance > bottom)){
temp = birainfij~distance;
strcpy(score..pad~jJname, btrain[iJ.name);
score..padolj.distance = btrainji ].distance;

bottom = temp;

/***Assign Weights for Each Position in the Rank.Ordered Matrix ****4
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for(j-I 1;j:5num-prolos; j++){
score~padoj.score =num-.protos+ I - j

I***~********** Pnt the Rank ************

I*priotff'\nLooking for: *s\n\n", name),
for'j--1; ;j:5num-proos; j++f)
pfinA(\n%8sy%4.Os t%.0t$ sco m-paddUJ .naimesc re-padWy.distance,

I****** Tally the Scores *****4

for(i--I; i<num-protos; i++)(
strcpy~iame,score.-padWi.name);,
begin =i+1;
forý=begin; j~num-protos; j++){

if(!strcnip(score..padUJ].name, name))
score..pad[iJ].score += score..pada .score-.

I*************e~*Find out who the user is ***s***********

sircpy(name.(char *)getenv(l USER, )),

I************ Prnt the Score*A***********

printf(\nWnLooking for -%s\n', name);
for~=1;~nu-prtosj++)

printf(* \W%d\t%8s\ t%4. Of \ t%d ,j,scorepadojJ.naniecscore-.padoj1.distance,
score..padUj].score);

/****** Find (he Max Score *****4

Max = 1;
temp scoue..padfmaxj.score;
for(i= 1; K< num-protos; i++)

if~temp-5score-padf il.score){
max=i;
temp=score..padli],score;

I******* Pull Up the Image of the Neauesi Neighbor ***s**

sprinifffilevame, %s %s~d ,t training.3mages / ,score-pad[nax),nanie. 1);
I*display(32,Iilename, 1),41

/* ** * ** Signify (he Person Recognized and Display the Image ****

if(!strcmp(name,score-padlmaxl~name))
printf(\nWnLogged in as %sn',name);

elsef
prinifetnWnYou've been recognized as %s\n*,score-padjmaxj.name);
/*systemC'logout ");'V

} **end k-.nearest **d
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